椭偏仪测量的测量过程

椭偏仪测量的测量过程,第1张

椭偏测量可取得薄膜的介电性质(复数折射率或介电常数)。它已被应用在许多不同的领域,从基础研究到工业应用,如半导体物理研究、微电子学和生物学。椭圆偏振是一个很敏感的薄膜性质测量技术,且具有非破坏性和非接触之优点。

分析自样品反射之偏振光的改变,椭圆偏振技术可得到膜厚比探测光本身波长更短的薄膜资讯,小至一个单原子层,甚至更小。椭圆仪可测得复数折射率或介电函数张量,可以此获得基本的物理参数,并且这与各种样品的性质,包括形态、晶体质量、化学成分或导电性,有所关联。它常被用来鉴定单层或多层堆栈的薄膜厚度,可量测厚度由数埃(Angstrom)或数纳米到几微米皆有极佳的准确性。 半导体物理、通讯、数据存储、光学镀膜、平板显示器、表界面科学研究、物理、化学、生物、医药、介电材料、有机高分子聚合物、金属氧化物、金属钝化膜、各种液体薄膜、自组装单分子层、多层膜物质等等

下图给出了椭偏仪的基本光学物理结构。已知入射光的偏振态,偏振光在样品表面被反射,测量得到反射光偏振态(幅度和相位),计算或拟合出材料的属性。

入射光束(线偏振光)的电场可以在两个垂直平面上分解为矢量元。P平面包含入射光和出射光,s平面则是与这个平面垂直。类似的,反射光或透射光是典型的椭圆偏振光,因此仪器被称为椭偏仪。关于偏振光的详细描述可以参考其他文献。在物理学上,偏振态的变化可以用复数ρ来表示:其中,ψ和∆分别描述反射光p波与s波振幅衰减比和相位差。P平面和s平面上的Fresnel反射系数分别用复函数rp和rs来表示。rp和rs的数学表达式可以用Maxwell方程在不同材料边界上的电磁辐射推到得到。

其中ϕ0是入射角,ϕ1是折射角。入射角为入射光束和待研究表面法线的夹角。通常椭偏仪的入射角范围是45°到90°。这样在探测材料属性时可以提供最佳的灵敏度。每层介质的折射率可以用下面的复函数表示

通常n称为折射率,k称为消光系数。这两个系数用来描述入射光如何与材料相互作用。它们被称为光学常数。实际上,尽管这个值是随着波长、温度等参数变化而变化的。当代测样品周围介质是空气或真空的时候,N0的值通常取1.000。

通常椭偏仪测量作为波长和入射角函数的ρ的值(经常以ψ和∆或相关的量表示)。一次测量完成以后,所得的数据用来分析得到光学常数,膜层厚度,以及其他感兴趣的参数值。如下图所示,分析的过程包含很多步骤。

可以用一个模型(model)来描述测量的样品,这个模型包含了每个材料的多个平面,包括基底。在测量的光谱范围内,用厚度和光学常数(n和k)来描述每一个层,对未知的参数先做一个初始假定。最简单的模型是一个均匀的大块固体,表面没有粗糙和氧化。这种情况下,折射率的复函数直接表示为:

但实际应用中大多数材料都是粗糙或有氧化的表面,因此上述函数式常常不能应用。

图中的下一步,利用模型来生成Gen.Data,由模型确定的参数生成Psi和Detla数据,并与测量得到的数据进行比较,不断修正模型中的参数使得生成的数据与测量得到的数据尽量一致。即使在一个大的基底上只有一层薄膜,理论上对这个模型的代数方程描述也是非常复杂的。因此通常不能对光学常数、厚度等给出类似上面方程一样的数学描述,这样的问题,通常被称作是反演问题。

最通常的解决椭偏仪反演问题的方法就是在衰减分析中,应用Levenberg-Marquardt算法。利用比较方程,将实验所得到的数据和模型生成的数据比较。通常,定义均方误差为:

在有些情况下,最小的MSE可能产生非物理或非唯一的结果。但是加入符合物理定律的限制或判断后,还是可以得到很好的结果。衰减分析已经在椭偏仪分析中收到成功的应用,结果是可信的、符合物理定律的、精确可靠。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7517984.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-06
下一篇 2023-04-06

发表评论

登录后才能评论

评论列表(0条)

保存