初二物理

初二物理,第1张

初中物理八年级下册教材内容共包括四章,他们分别是:欧姆定律、电功率、电与磁、信息的传递,他们都是功勋卓著的电与磁内容。

第六章 欧姆定律

课程标准的要求:

1. 初步了解半导体的一些特点,了解半导体材料的发展对社会的影响.

2. 初步了解超导体的一些特点,了解超导体对人类生活和社会发展可能带来的影响.

3. 能连接简单的串联电路和并联电路,能说出生活生产中采用串联电路和并联电路的实例.

4. 通过实验探究电流,电压和电阻的关系,理解欧姆定律,并能进行简单计算.

5. 会使用电流表和电压表.

6.了解家庭电路和安全用电知识,有安全用电意识:

全章内容概述.

1.电压 电压的单位,电压的测量.

2.探究串联电路中电压的规律.

3.电阻 电阻的概念,单位,变阻器的结构及作用.

4.欧姆定律 电流电压电阻之间的关系,短路的危害.

5.测量小灯泡的电阻.

6.欧姆定理和安全用电 .

教材内容分析及建议:

章首图:章首图是雷电现象,是同学们日常生活中常见的自然现象。我们教师要引导学生观察,引发学生思考。可提问:生活中的电和雷电有关系吗?以激发学生探索大自然奥秘的兴趣。

第一节 电压

通过此节的学习要让学生明白电压的单位是什么?怎样测量电压?这是对学生 最基本的要求。

电压是电学中重要的概念,是研究欧姆定律的基础。本节重点是练习使用电压表。

图6.1—1是实验室模拟的雷电现象,即起电机的高压放电现象。与章首图相对比,可让学生思考自然现象与科学实验也有联系。教师可想办法模拟实验,演示放电现象。

电压概念的形成:教材从日常生活中学生热知的“电压”一词来学习。教材只讲了电压是什么的问题。

教学建议:启发提问:你在日常生活那些地方听说过“电压”这一概念呢?让学生讨论、阅读思考回答,让他们从实际中认识电压。

想想做做:要求学生仔细观察灯泡两端电压变化及亮度变化情况。让学生感知灯泡的亮度与电压的关系,从而引出电压的作用。即要在一段电路中产生电流,它的两端要有电压。然后讲解电源作用、电压表示符号及单位。

怎样连接电压表:是本节教材的重点,它去掉了现行教材的讲述式的介绍电压表的使用方法,而是让学生根据说明书自学并使用电压表要求学生带着问题去阅读电压表的使用说明书,来获取所需要的信息。从而培养了学生的阅读能力。

建议:教师可以采用先让学生阅读电压表使用说明书,然后交流获取的信息,谈谈电压表的连接方法。同时让学生根据电压表的使用方法自我设计一个用电压表测小灯泡两端的电路,并动手实验。这样培养了学生与人合作、交流的习惯。

教师注意:电压表的连接与旧教材的区别:过去的是“电压表与部分电路并联”。电流从“+”入“—”出,过于抽象。现今更加直观、准确、可 *** 作性强。

怎样在电压表上读数:教材没有告诉读数的方法,而是采用类比联想的方法让学生自己思考电压表读数的方法。教师在教学中切忌直接告诉。可先展示一下电流表,让学生说说电流表的读数方法,然后想想该怎样,谈谈你从电流表的读数中受到什么启发。大胆尝试一下电压表的读数。

想想做做:电池串联问题是生活中常见的问题。通过学生动手实验、对测量的分析,不难得出串联电池组电压的特点,即让他们从实验中感知串联电池组电压比单个电池电压多,且等于个串联电池电压之和。

建议:教师可让学生动手实验后提问:串联电池电压组给了我们哪些新的启发呢?关于学生问到并联电池组电压时,由于并联电池组在日常生活中少见,教材未研究,教学中可让学生课外研究。

动手动脑学物理:共有4个小题,且都联系实际,给学生实践的机会。第2题自制盐水电池,并用电压表判断电源正、负极。教师应想办法为学生提供器材,让他们动手实验。有利于提高学生实践能力,打破对电的产生的神秘感。在用电压表判断电源正负极时,大胆用“试触”的方法来实验。遇到问题可讨论如何解决。

第2节 探究串联电路中电压的规律

这个探究是教材中没有告诉结论的探究。它是从学生实验演变而来的,为学生提供了探索过程完全的探究。教材告诉了一个学案,有些探究程序中的具体内容需要学生自己填写。探究的结论,学生容易得出。教材中之所以没有给出结论,其原因之一是标准中没有确定的要求。

建议:由于教材中给出了学生导学的过程。因此,教师可将学生分成小组,让他们自我探讨完成导学内容前五部分,然后让他们交流。同时,教师也可以让学生将并联电路中电压规律的探究,作为课外内容布置,让学生去完成。当然教师也可以用实验向学生展示。

动手动脑学物理:第2题制作水果电池,是一个非常有趣的实验。不仅用菠萝可做,而且用其他水果、蔬菜如葡萄、土豆等也可以做。活动中让学生感知了电压表的作用,进一步巩固了利用电压表判断电源正负极的方法。此实验活动的最后让学生思考:关于“水果电池”你还发现了什么?让学生展开想象,培养了学生的发散思维,让学生利用身边的生活用品来做实验,激发了学生的兴趣。

STS:防止废电池对环境的危害。主要讲保护环境的的问题,教师要引导学生阅读。

第三节 电阻

通过此节的学习,要让学生明白电阻的概念,单位是什么?变阻器是什么样的?如何调节灯泡的亮度?了解半导体、超导体的特点。

本节内容电阻是电学中重要物理量之一,对电阻的理解,探究导体长度对导体电阻大小的影响及怎样用变阻器改变灯炮的亮度是本节内容的重点。

1.电阻概念的形成:教材首先从学生们熟悉的事例中引出了同学们在日常生活中并不陌生的概念:导体、绝缘体、接着让学生通过“想想做做”动手实验来获取不同导体连入电路中对灯泡的亮度的影响的信息。让学生从中受到启发、感知

导体对电流阻碍作用有大、有小。从而形成电阻的概念,避免了过去的读概念、记概念的做法。

想想做做:(见教材附注)建议:当学生自我动手试验后,课中提出思考:你从中受到什么启发?有困难是教师可引导,如“引起灯泡亮度变化,你是通过什么途径获得的?”

2.影响电阻大小的因素:课标中没有明确的要求,而是以活动建议的形式提出,课本中以“想想做做”来研究电阻大小与长度的关系。为理解滑动变阻器的原理打基础。学生通过“想想做做”的实验探究来获取信息。明白了铅笔芯的长短对电阻大小的影响

建议:实验中教师可提问:实验中你研究的问题是什么?小灯泡作用是什么?让学生明白铅笔芯电阻的大小可通过灯泡亮暗程度来体现(学生完成这一思维过程,笔者认为是有一定难度的教师应给予引导)

3.变阻器:研究变阻器时,除研究了滑动变阻器外,还增添拓展了对电位器的研究,画出了电位器的内部结构图,教学建议P16,批注。

4.探究变阻器的作用:怎样用变阻器改变灯炮的亮度?这个探究有两个核心问题:○1变阻器是怎样改变电阻的?○2如何让学生自己设计电路。这对学生来说是有一定难度的。建议:(见教材P16,批注)

5.科学世界 介绍了半导体、超导体的特点及半导体、超导体材料的发展对高科技的影响,教师要给予指导性的阅读。

第四节 欧姆定律

1.探究电阻上的电流跟电压的关系,这是一个完整的探究,不希望教师告诉学生的结论,应让学生去探究,通过测得的数据分析得出结论。应注意多次测量数据,综合分析,以避免出现以偏概全的错误,强调学生要如实记录,综合分析,得出结论。这个探究是过程完全的探究,课标中有要求,教材给出了结论,学生应加强理解。

教材中还设计了例题,渗透了物理学的计算方法。欧姆定律知识的应用,对于物理计算,教师要有度。注意不要把计算题设计的过深、过难、过偏,应有实用性,体现学习物理的实用价值。如教材例题一中,通过对试电笔中电流的计算,让学生明白试电笔的使用方法及安全用电的注意事项。

额定电压、短路:短路主要让学生明白,短路时电阻小,电流大。危害:电源损坏,导线升温,可能导致火灾。

第五节 测量小灯泡的电阻

本节内容突出了学生实践能力的培养。教材中“想想议议”为学生测电阻作准备。思考如何设计测电阻的试验电路,教师应鼓励学生自己设计电路、 *** 作步骤及记录数据表格。实验过程中,一定要强调学生如实记录,引导学生对计算数据的分析。同时,强调变阻器的作用。

第六节 欧姆定律和安全用电(投影)

本节内容涉及知识面较宽,主要研究○1为什么电压越高越危险?○2为什么不能用湿手触摸电器?○3注意防雷:讲了形形色色的避雷方法。○4STS:气象报上的新闻增强了学生对欧姆定律的理解。

第七章 电功率

课程标准的要求:

1. 能从能量的角度认识电源和用电器的作用.

2. 理解电功率和电流.电压之间的关系并能进行简单的计算,能区分用电器的额定功率和实际功率.

3. 通过实验探究,知道在电流一定时,导体消耗的电功率与导体的电阻成正比.

4. 了解家庭电路和安全用电知识,有安全用电的意识.

全章内容概述:

1.电能 电能的单位,电能表的读数.

2.电功率 家用电器的“瓦”数表示的意思.

3.测量小灯泡的电功率.

4.电和热 什么情况下电流发热多?怎样利用电热和防止电热.

5.电功率和安全用电 保险丝怎样“保险”?为什么用电器接的太多就会烧保险丝?

教材内容分析及建议

章首图:它是风能发电(投影)。学生对水力、火力发电较熟悉,而风力发电只有在我国北方才有,南方同学少见 。这幅图,旨在让大多数同学都能对风力发电有所了解,扩大学生知识面,调动学生学习积极性。

第一节 电能(投影)

电能是本章的核心概念。学生在日常生活中已经对电能的知识有所了解,教材给出了一个火力发电场的图片,让学生感知电能获得的途径致意,火力发电。同时也列举了电能的应用的实例即教材是围绕电能的来源和使用而展开,让学生从实例中来感知“电能”这一概念,并不要求学生了解电能的定义

电能的单位:日常生活中的“度”。科学名词“千瓦时”(KW•h)物理学中常用单位:焦(J)1KW•h=3.6×106J

电能表:本节重点内容,初中学生学习电能表的作用是一个科普性的内容.学生应该明白:读数、记录一些参数,让学生同过对参数的阅读,更深入了解电能表。建议见P31

电功:教材从电能的转化和过程来让学生识别“功”的概念,学生读教材后,可让学生说说:日常生活中,电流做功的实例。教材没有告诉功的计算公式,降低了难度。

动手动脑学物理:3个题目,实用性很强,与生活联系紧密,学生通过练习,让他们意识到物理就在身边,物理有用。

第二节 电功率

本节内容:是以电能表为基础来研究电功律的。即教师可通过实验让学生观察不同用电器工作时,电能表铝盘转动有快慢,而导出电功率。建议:P33

电功率表示消耗电能的快慢 电功率大小的表示方法可用1s内消耗电能表示即p=w/t

“千瓦时”的来历:通过对“千瓦时”来历的研究来加深学生对“KW•h”与“KW”的区别。

怎样测量电功率:讲了测电功率的两条途径,即专用功能表,非专业实验中常用V、I间接测量。额定功率 图7.2-2 7.2-3

第三节 测量小灯泡的功率

这是一个电学部分内容总结性的探究实验,综合性较强,是对学生能力的综合性表现。先推导出电功率公式P=VI然后探究测量方法。建议:(见P36)

第四节 电和热

此接实际是旧教材中的内容。但教材是从常见得用电器入手,引出电流的热效应现象,同时提出问题,让学生通过“想想做做”来研究。感知在电流相同条件下,电阻越大,在单位时间内产生的热量越多,即产生热量的功率大这一规律。

想想做做:学生在探究实验前,教师应给予指导,如在实验中你是采用什么方法来比较电阻器产生热量的快慢的?实验中通过观察温度计示数的变化,来感知电阻丝不同,产生的热不同。P39

电流的热效应跟电阻大小的关系是本节的重点。课标中有明确要求:即通过实验探究知道在电流一定时,导体消耗的电功率与导体的电阻呈正比。教材先通过实验让学生有了感性认识,然后推理得出P=I2R。让学生理解定理并解释现象。本节还讲了电热的利用和防止。

第五节 电功率和安全用电

安全用电的内容教材中出现了三次,即第一处是第一章的测电比的使用与全用电、欧姆定律与安全用电、电热与安全用电。教材先通过“想想议议”,让学生思考在电压一定时,电流与电功率的关系接着通过漫画形象地展示了用电器总功率过大造成安全用电隐患的问题,即电路中同时使用的用电器总功率过大容易烧坏保险丝,甚至引起火灾。

保险丝:应用电热的原理制成,也告诉学生不能用Cu、Fe丝代替保险丝的道理,同时还告诉了空气开关

想想议议:动手动脑学物理都从实际中列出的有关物理问题,让学生用所学的物理知识加以解决。让学生体会学习的实用性。

第八章 电和磁

课程标准的要求:

1.能用语言.文字和图表描述常见物质的物理特征.

2.能用实验证实电磁相互作用.

3.通过实验,探究通电螺线管外部磁场的方向.

4.通过实验,了解通电导线在磁场中会受到力的作用,力的方向与电流及磁场的方向都有关.

5.通过实验,探究导体在磁场中运动时产生感应电流的条件.

全章内容概述:

1.磁场 磁场及磁感线的概念.

2.电生磁 电流周围的磁场及通电螺线管外部的磁场是什么样的?

3.电磁继电器 扬声器 如何用小电流控制大电流,低电压控制高电压?扬声器是怎样工作的?

4.电动机 影响通电导体在磁场中受力方向的有关因素,电动机的换向器的作用,电动机和人类生活的关系.

5.磁生电 什么情况下磁生电?什么是交流电?

教材内容分析及建议

本章内容是电磁的基础,应重视学生的感悟与实验,重视实际利用,重视与生产生活的联系,以学生的动手动脑来体会:学习物理有用。注意指导学生联系实际,学习探究物理奥秘的方法。

章首图:它是一幅激光图片。它是地磁场使得来自太阳的高速粒子飞向地球的两极,与空气中分子原子作用形成绚丽的极光。教师可引导学生齐读章首语,通过阅读可以将学生的思维引入到研究磁场的问题中来。

第一节 磁场

本节的重点是磁场及磁感线。教材通过从古代历史入手,即中国人利用手中罗盘在公元843年,开辟了从浙江温州到达日本嘉值岛的航线。导出了我国的四大发明之一:指南针。让学生通过阅读指南针的发明,来进一步明白指南针的作用。

关于磁现象学生是比较熟悉的,虽然对场比较陌生,但对身边有磁场的物体都比较熟悉,尤其对读过小学自然的同学来学习这部分内容,相当于是复习的性质。教师可通过让学生阅读磁现象有关内容及想想议议来学习。让他们自我阅读、看图填空,引发学生思考、激发学生兴趣。

磁场:教材先给出了磁场定义,接着让学生通过想想做做的实验探究来研究磁体的磁极,感知磁体周围的磁场、磁场的方向。

通过教师演示实验让学生感知条形磁体的磁场的分布。通过P48 图⒏1-6 ⒏1-7 类比联想找出磁感线分布规律。

地磁场:学生通过前面的实验不难发现小磁针静止的指向的规律性不易推断出周围有磁场对它的作用,即地磁场教材中明确指出了地理地磁两极并不重合。至于地磁场产生的原因还是一个秘密,还没有满意的结果。教材把希望寄予在同学门身上

磁化:课标中虽没有明确要求,单磁化内容在日常生活中多见,我们要引导学生学习。教材中安排了一个探究性的实验,来研究磁化问题,通过实践活动使学生大致了解到使一根钢针磁化的方法,后面又让学生利用自己自制的磁化钢针制作一个指南针,实验容易成功。这样让学生体验成功的快乐,激发学生学习兴趣。科学世界可引导学生阅读。

第二节 电生磁

本节重点:电流磁效应 教材通过重复奥斯特做过的实验掩饰,让学生明白电和磁之间的联系。并对电流的磁场给了描述性的定义,

通电螺线管的磁场 这部分内容教材通过探究性的实验来研究通电骡线管的磁场可能与那种磁体相似。通电螺线管的磁性与电流方向之间有什么关系。对于螺线管中的极性与电流方向的关系,教材没有结论它希望学生通过图⒏2-6中蚂蚁和猴子的对话受到启发。归纳的出结论。这有一定难度,可以适当提示,不过这部分内容课标并没有做要求。教材也只是让学生通过实验探究的方法,让学生有所了解。

电磁铁:教材是让学生自制电磁铁,自我设计电路、实验方案来探究影响电磁铁磁性强弱的因素。这重安排,我们许多教师在过去教学中都尝试过,效果较好。

动手动脑学物理:第1题 牵牛花的茎 是让学生将前面所学的归纳的螺线管磁极与电流方向的方法迁移运用及发展,教师不易展开。因为它涉及知识面较广。

第三节 扬声器 电磁继电器

本节内容是电磁铁的应用,主要讲了电磁继电器的工作原理,扬声器的结构及工作原理教师可采用阅读讲解的方法进行。“想想做做”教师要引导学生将其落实,让学生阅读继电器的使用说明书,观察结构,动手实验,来加强对电磁继电器的了解。

第四节 电动机

电动机在我们生活中广泛存在,那么电动机能够转动是为什么呢?这一问题对同学们来说都想急切知道,但是要理解它却有一定难度教材改变了过去的从理论开始的教学模式,从探究入手,激发学生求知的欲望和对成功的渴望。

本节主要有以下内容:○1演示磁场对通电导体的作用。○2演示通电线圈在磁场中扭转。○3探究让线圈转起来。○4直流电动机的基本构造 换向器

教学建议:教师引入新课标可先提出问题:磁体再磁场中回受到力的作用。通电的螺线管有磁性像一个磁体有N、S极。那么是不是意味着通电导体也会受到磁场的作用力呢?引发学生猜想,然后师生共同探究可得出结论。通电导体在磁场中要受到力的作用。且受力方向与电流方向、磁感线方向有关。

接着教师启发提问若将一个通电线框放在磁场中,他会怎样运动呢?学生猜想,教师演示实验,验证猜想(也可让学生动手实验)。可发现通电线圈在磁场中发生扭转现象,这样激发了学生兴趣,引发了学生思考。同时教师可在学生思维处于亢奋状态之时提问:通过刚才的两个实验可知,既然磁场对通电导线有力的作用,既然通电线圈在磁场中能发生扭转,那么我们能否想办法让线圈转动起来呢?激发学生探究的欲望。引导学生探究,做让线圈转起来的实验。这个探究是旧教材中自制小小电动机的小制作内容,学生非常感兴趣,很容易成功。

通过这个小小的实验(投影),让学生明白了线圈转动时的主要问题是改变线圈中电流的方向。学生在探究制作的过程中,肯定有成功的或不成功的,这样他们都会去探究,去观察,想知道其中的奥秘。同时定会有学生提问:为什么在制作时只将导线的一端刮掉一半的漆皮呢?此时教师可告诉学生:这是为了改变线圈中电流的方向。从而告诉学生这就是一个小小电动机,接着可讲解一般电动机的结构,换向器的作用。通过前面的小制作,学生感知了线圈转动时需要改变电流。这样对换向器的作用学生就不难理解了。这样在重视实验事实的基础上来研究问题,学生就容易对教材P63图⒏4-5中的现象进行理解了。

第五节 磁生电

本节内容主要有:探究什么情况下磁能生电,引出电磁感应现象。教材中没有直接告诉电磁感应现象的概念,而是让学生去探究感知。

发电机:(投影)改变了过去教学模式,而是从实验入手,讲解发电机,加深学生对发电机得了解。通过“想想做做”,让学生明白发电机电流的方向改变次数与线圈转动次数的关系,发电机转速跟小灯泡亮度的关系。让学生感知、体会发电机发电是能量的转化过程。

动手动脑学物理、STS:介绍了磁记录、录音机、磁记录产品、磁卡等。

第九章 信息的传递

课程标准的要求:

1.知道光是电磁波.

2.知道电磁波的传播速度.

3.了解电磁波的应用及对人类社会发展的影响.

全章内容概述:

1.现代顺风耳__电话 电话的工作原理及电话交换机的作用.

2.电磁波的海洋 电磁波的产生及传播,电磁波的波长,频率和波速的关系.

3.广播.电视和移动通信 无线电广播和电视的工作过程,移动电话是如何工作的?

4.越来越宽的信息之路 微波通信为什么需要中继站,卫星通信?光纤为什么能传送大量的信息?什么是宽带网?

教材内容分析及建议

章首图:(投影)这是一幅古长城,绵延万里,蜿蜒起伏,向人们展示了它的雄伟、壮观。同时也引起学生对它的思考,古长城的作用—抵御来犯之敌,“烽火台”的烟火点燃向远处同伴传递着信息;古人用长城传递信息,现代人用那些方式传递信息呢?引入新课。

教材用一幅组合图(P74),让学生观察,通过“想想议议”来对通信发展的回顾,让学生了解信息传递的历史。教师可让学生在课堂上尽情的交流,可以先让每个人说出自己知道的通信方式,再通过书上的组合图的提示,引导学生梳理出同学通信发展的历史脉络。

教师引导学生对组合图观察,让学生感知了信息是需要运载才能传递的。教师可告诉学生,信息常指的是消息、情报、信号、指令、数据、密码等的总称。信息传递需要的运载工具就是载体。如语文、文字、印刷品、电流、数字网络都是信息的载体。教材就按照信息的载体的发展情况来编写的。

第一节 现代顺风耳—电话

本节的重点是让学生明白电话的工作原理和电话交换机的作用,让学生了解数字信号和摸拟信号。教材通过神化的传说“顺风耳”,引起学生关注信息传递的兴趣,体现了人文精神。讲述了当今社会是狠多神话已变成了现实,引出了电话的内容。

图9.1-2电话:(投影)他向学生展示了电话是利用电流把信息传导远处的,图注告诉了话筒、听筒的基本作用。

电话交换机:教材通过电话的问世到交换机的出现,让学生体会到科学技术进步与社会发展的意义。

想想议议:让学生思考电话交换机的作用,即通过电话交换机能减少电话线的数量,减少材料的浪费。

拓展:程控电话 技术发展,电话交换机有人 *** 作变为自动电话交换机(通过电磁继电器接线),即程控电话机。模拟通信和数字通信:电话分模拟和数字两种。电流传递的信号叫模拟信号,这种通信方式叫模拟通信。用不同符号的不同组合表示的信号叫数字信号,这种通信方式叫数字通信。数字通信是未来的发展方向。

建议:模拟通信、数字通信看起来是技术性很强的名词,实际上它与我们生活息息相关教材通过形象的描述对这两个概念进行了介绍,教师教学时不要展开。教材介绍了莫尔斯电码、汉字电报码旨在加深学生对数字信号的认识,扩大学生的知识面。教师也不要过多讲解。想想做做、动手动脑学物理(见P79)

第二节 电磁波的海洋

这一节是本章的重点。电磁波其实是无限的信息传递的内容。主要讲解了电磁波的产生及传播。

电磁波的产生:教师不要讲产生的基本原理,要通过演示实验来向学生展示电磁波的存在及产生,即电磁波是由迅速变化的电流来产生的。通过实验打破学生对电磁波的神秘感。

电磁波的传播:教师可以声波的传播需要介质为基础,让学生想象:电磁波是否也需要介质呢?让学生带着问题去研究,师生共同设计方案动手实验得出结论。

电磁波的波速与波长、频率的关系,及电磁波谱要引导学生分析。让它们有一个大概的了解对于电磁波在真空中传播速度C=3×105㎞∕S(即30万千米每秒)应让学生记忆。

科学世界:(投影)微波炉主要告诉学生电磁波不仅可以用来传递信息,还可以使食物分子发生剧烈振动,扩大学生视野,让学生做科普性的了解。

第三节 广播、电视和移动通信

这一节内容,教师可采用科普讲座的形式,向学生介绍展示。主要介绍了无线电广播信号的发射和接收、电视的发射和接收、移动电话的基本原理。教师只作简单介绍,不要深究。笔者认为主要通过教材5幅图片来展示讲解。

科学世界:介绍音频、视频、射频和频道,要引导学生阅读。

STS:电视给我们带来了什么?教师要让学生讨论交流。

第四节 越来越宽的信息之路

此节内容也是一个科普性介绍的内容,主要讲解了为什么要利用微波通信,为什么要建立微波中继站、卫星通信、光纤通信。此部分内容主要通过图片向学生展示介绍即可。

STS:我国光缆通信的发展,教师可以引导学生阅读。它旨在培养学生保护光缆的意识。光的频率比电磁波的频率更高,因此要用光纤通信。

你好,本人今年也刚好考上集成电路研究生。这是微电子学科的专硕,要学的基础课程有半导体物理,半导体器件物理,集成电路工艺,还有一些电路方向的课程。至于教材,大学和中学不一样,老师都有选择自己想教学的教材的权利,每所学校的教材可能都不一样,但是半导体物理用的比较多的是刘恩科第七版的教材。

半导体的应用, 半导体有哪些常见的应用

半导体一般指矽晶体,它的导电性介于导体和绝缘体之间。

半导体是指导电能力介于金属和绝缘体之间的固体材料。按内部电子结构区分,半导体与绝缘体相似,它们所含的价电子数恰好能填满价带,并由禁带和上面的导带隔开。半导体与绝缘体的区别是禁带较窄,在2~3电子伏以下。

典型的半导体是以共价键结合为主的,比如晶体矽和锗。半导体靠导带中的电子或价带中的空穴导电。它的导电性一般通过掺入杂质原子取代原来的原子来控制。掺入的原子如果比原来的原子多一个价电子,则产生电子导电;如果掺入的杂质原子比原来的原子少一个价电子,则产生空穴导电。

半导体的应用十分广泛,主要是制成有特殊功能的元器件,如电晶体、积体电路、整流器、镭射器以及各种光电探测器件、微波器件等。

半导体的应用的问题

1楼2楼耸人听闻,哪有那么严重。在半导体材料投入使用以前二战都已经结束了,大量采用电子管的电器装置已经投入民用。众所周知的事实是前苏联半导体材料发展极度落后,无论米格-25歼击机还是联盟号宇宙飞船都还使用着电子管装置,直到九十年代以后俄罗斯才逐步跟上来。

对日常生活的影响,简单地说——

一切使用微控制器也就是所谓“电脑板”的电器都重归机械控制;

不会出现微型计算机,只有巨型机/大型机/小型机,即便有了个人电脑也要衣柜那么大个,耗电量惊人,绝对奢侈品,笔记本就更不用说了;

没有微机当然更没有游戏机了,玩魂斗罗超级玛丽警察抓小偷永远是幻想;

收音机最小也要新华词典那么大,注意:是辞典不是字典;

电视机仍然是阴极射线管的,因为根本生产不出液晶板,不过幸好还能看到彩电;

微波炉可能要洗碗柜那么大吧?因为电子管是很占体积的;

洗衣机是半自动型的,使用机械定时器——微波炉也是。

冰箱一定是外形大大,立升小小,噪音隆隆,前苏联就有那种玩意的实物;

照相机继续用胶卷的,什么数码DC/DV统统不存在;

摄像机会相当笨重,只能用录影带;

您好!这里是邮电局,打电话请用拨盘拨号,如需拨往外地请让我为您转接……呃,这位同志,程控交换机是什么东西?——某人工接线员;

不存在什么VCD、DVD,录影机/放像机也不太会普及——太大、太贵;

没有了微型计算机你会感觉到练得一笔好字的必要性;

飞机导d卫星飞船空间站照样满天飞,战舰航母潜艇坦克照样满世界溜达;

网际网路可能会有,但那将是各国官方、军方和科研机构御用的玩意,跟咱老百姓没啥关系;

……能想起来的差不多都写上了。

半导体的应用,最好说详细点。

试想过你的生活缺少了数字是什么概念吗?那将是一个混乱的世界,无论是你的手机号码、你的身份z号码、还是你家的门牌号,这些全部都是用数字表达的!电子游戏、电子邮件、数码音乐、数码照片、多媒体光碟、网路会议、远端教学、网上购物、电子银行和电子货币……几乎一切的东西都可以用0和1来表示。电脑和网际网路的出现让人们有了更大的想象和施展的空间,我们的生活就在这简单的“0”“1”之间变得丰富起来、灵活起来、愉悦起来,音像制品、手机、摄像机、数码相机、MP3、袖珍播放机、DVD播放机、PDA、多媒体、多功能游戏机、ISDN等新潮电子产品逐渐被人们所认识和接受,数字化被我们随身携带着,从而拥有了更加多变的视听新感受,音乐和感觉在数字化生活中静静流淌……

数字生活已成为资讯化时代的特征,它改变着人类生活的方方面面,在此背后,隐藏着新材料的巨大功勋,新材料是数字生活的“幕后英雄”。

计算机是数字生活中的重要装置,计算机的核心部件是中央处理器(CPU)和储存器(RAM),它们是以大规模积体电路为基础建造起来的,而这些积体电路都是由半导体材料做成的,Si片是第一代半导体材料,积体电路中采用的Si片必须要有大的直径、高的晶体完整性、高的几何精度和高的洁净度。为了使积体电路具有高效率、低能耗、高速度的效能,相继发展了GaAs、InP等第二代半导体单晶材料。SiC、GaN、ZnSe、金刚石等第三代宽禁带半导体材料、SiGe/Si、SOI(Silicon On Insulator)等新型矽基材料、超晶格量子阱材料可制作高温(300~500°C)、高频、高功率、抗辐射以及蓝绿光、紫外光的发光器件和探测器件,从而大幅度地提高原有矽积体电路的效能,是未来半导体材料的重要发展方向。

人机交换,常常需要将各种形式的资讯,如文字、资料、图形、影象和活动影象显示出来。静止资讯的显示手段最常用的如印表机、影印机、传真机和扫描器等,一般称为资讯的输出和输入装置。为提高解析度以及输入和输出的速度,需要发展高灵敏度和稳定的感光材料,例如镭射印表机和影印机上的感光鼓材料,目前使用的是无机的硒合金和有机的酞菁染料。显示活动影象资讯的主要部件是阴极射线管(CRT),广泛地应用在计算机终端显示器和平面电视上,CRT目前采用的电致发光材料,大都使用稀土掺杂(Tb3+、Sn3+、Eu3+等)和过渡元素掺杂(Mn2+)的硫化物(ZnS、CdS等)和氧化物(Y2O3、YAlO3)等无机材料。

为了减小CRT庞大的体积,资讯显示的趋势是高解析度、大显示容量、平板化、薄型化和大型化,为此主要采用了液晶显示技术(LCD)、场致发射显示技术(FED)、等离子体显示技术(PDP)和发光二极体显示技术(LED)等平板显示技术,广泛应用在高清晰度电视(HDTV)、电视电话、计算机(台式或可移动式)显示器、汽车用及个人数字化终端显示等应用目标上,CRT不再是一支独秀,而是形成与各种平板显示器百花争艳的局面。

在液晶显示技术中采用的液晶材料早已在手表、计算器、膝上型电脑、摄像机中得到应用,液晶材料较早使用的是苯基环己烷类、环己基环己烷类、吡啶类等向列相和手征相材料,后来发展了铁电型(FE)液晶,响应时间在微秒级,但铁电液晶的稳定性差,只能用分支法(side-chain)来改进。目前趋向开发反铁电液晶,因为它们的稳定性较高。

液晶显示材料在大萤幕显示中有一定的困难,目前作为大萤幕显示的主要候选物件为等离子体显示器(PDP)和发光二极体(LED)。PDP所用的荧光粉为掺稀土的钡铝氧化物。用类金刚石材料作冷阴极和稀土离子掺杂的氧化物作发光材料,推动场发射显示(FED)的发展。制作高亮度发光二极体的半导体材料主要为发红、橙、黄色的GaAs基和GaP基外延材料、发蓝光的GaN基和ZnSe基外延材料等。

由于因特网和多媒体技术的迅速发展,人类要处理、传输和储存超高资讯容量达太(兆兆)数字位(Tb,1012bits),超高速资讯流每秒达太位(Tb/s),可以说人类已经进入了太位资讯时代。现代的资讯储存方式多种多样,以计算机系统储存为例,储存方式分为随机记忆体储、线上外储存、离线外储存和离线储存。随机记忆体储器要求整合度高、资料存取速度快,因此一直以大规模整合的微电子技术为基础的半导体动态随机储存器(DRAM)为主,256兆位的随机动态储存器的电晶体超过2亿个。外储存大都采用磁记录方式,磁储存介质的主要形式为磁带、磁泡、软磁碟和硬磁碟。磁储存密度的提高主要依赖于磁介质材料的改进,相继采用了磁性氧化物(如g-Fe2O3、CrO2、金属磁粉等)、铁氧体系、超细磁性氧化物粉末、化学电镀钴镍合金或真空溅射蒸镀Co基合金连续磁性薄膜介质等材料,磁储存的资讯储存量从而有了很大的提高。固体(闪)储存器(flash memory)是不挥发可擦写的储存器,是基于半导体二极体的积体电路,比较紧凑和坚固,可以在记忆体与外存间插入使用。记录磁头铁芯材料一般用饱和磁感大的软磁材料,如80Ni-20Fe、Co-Zr-Nb、Fe-Ta-C、45Ni-55Fe、Fe-Ni-N、Fe-Si、Fe-Si-Ni、67Co-10Ni-23Fe等。近年来发展起来的巨磁阻(GMR)材料,在一定的磁场下电阻急剧减小,一般减小幅度比通常磁性金属与合金的磁电阻数值约高10余倍。GMR一般由自由层/导电层/钉扎层/反强磁性层构成,其中自由层可为Ni-Fe、Ni-Fe/Co、Co-Fe等强磁体材料,在其两端安置有Co-Cr-Pt等永磁体薄膜,导电层为数nm的铜薄膜,钉扎层为数nm的软磁Co合金,磁化固定层用5~40nm的Ni-O、Ni-Mn、Mn-In、Fe-Cr-Pt、Cr-Mn-Pt、Fe-Mn等反强磁体,并加Ru/Co层的积层自由结构。采用GMR效应的读出磁头,将磁碟记录密度一下子提高了近二十倍,因此巨磁阻效应的研究对发展磁储存有着非常重要的意义。

半导体的具体应用

最常见的:半导体收音机、掌上计算器、电脑内的主机板显示卡等硬体都要用道半导体、电视机里的部件也要用半导体晶片、手机内部的部件、汽车内也要用到的一些部件。目前大部分将用电器都要用到数字晶片,而不是模拟的(DSP),这些晶片说白了就是用半导体做成的。

半导体镭射器的应用

半导体二极体镭射器在镭射通讯、光储存、光陀螺、镭射列印、测距以及雷达等方面以及获得了广泛的应用

还可以作为固体镭射器的泵浦源,安防领域照明光源,现在应用的领域非常广了

半导体的三个广泛应用:

一、在无线电收音机(Radio)及电视机(Television)中,作为“讯号放大器/整流器”用。

二、近来发展太阳能(Solar Power),也用在光电池(Solar Cell)中。

三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,解析度可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是价效比极高的一种测温元件。

参考百度百科,仅供参考!

半导体在生活中的应用

试想过你的生活缺少了数字是什么概念吗?那将是一个混乱的世界,无论是你的手机号码、你的身份z号码、还是你家的门牌号,这些全部都是用数字表达的!电子游戏、电子邮件、数码音乐、数码照片、多媒体光碟、网路会议、远端教学、网上购物、电子银行和电子货币……几乎一切的东西都可以用0和1来表示。电脑和网际网路的出现让人们有了更大的想象和施展的空间,我们的生活就在这简单的“0”“1”之间变得丰富起来、灵活起来、愉悦起来,音像制品、手机、摄像机、数码相机、MP3、袖珍播放机、DVD播放机、PDA、多媒体、多功能游戏机、ISDN等新潮电子产品逐渐被人们所认识和接受,数字化被我们随身携带着,从而拥有了更加多变的视听新感受,音乐和感觉在数字化生活中静静流淌……

数字生活已成为资讯化时代的特征,它改变着人类生活的方方面面,在此背后,隐藏着新材料的巨大功勋,新材料是数字生活的“幕后英雄”。

计算机是数字生活中的重要装置,计算机的核心部件是中央处理器(CPU)和储存器(RAM),它们是以大规模积体电路为基础建造起来的,而这些积体电路都是由半导体材料做成的,Si片是第一代半导体材料,积体电路中采用的Si片必须要有大的直径、高的晶体完整性、高的几何精度和高的洁净度。为了使积体电路具有高效率、低能耗、高速度的效能,相继发展了GaAs、InP等第二代半导体单晶材料。SiC、GaN、ZnSe、金刚石等第三代宽禁带半导体材料、SiGe/Si、SOI(Silicon On Insulator)等新型矽基材料、超晶格量子阱材料可制作高温(300~500°C)、高频、高功率、抗辐射以及蓝绿光、紫外光的发光器件和探测器件,从而大幅度地提高原有矽积体电路的效能,是未来半导体材料的重要发展方向。

人机交换,常常需要将各种形式的资讯,如文字、资料、图形、影象和活动影象显示出来。静止资讯的显示手段最常用的如印表机、影印机、传真机和扫描器等,一般称为资讯的输出和输入装置。为提高解析度以及输入和输出的速度,需要发展高灵敏度和稳定的感光材料,例如镭射印表机和影印机上的感光鼓材料,目前使用的是无机的硒合金和有机的酞菁染料。显示活动影象资讯的主要部件是阴极射线管(CRT),广泛地应用在计算机终端显示器和平面电视上,CRT目前采用的电致发光材料,大都使用稀土掺杂(Tb3+、Sn3+、Eu3+等)和过渡元素掺杂(Mn2+)的硫化物(ZnS、CdS等)和氧化物(Y2O3、YAlO3)等无机材料。

为了减小CRT庞大的体积,资讯显示的趋势是高解析度、大显示容量、平板化、薄型化和大型化,为此主要采用了液晶显示技术(LCD)、场致发射显示技术(FED)、等离子体显示技术(PDP)和发光二极体显示技术(LED)等平板显示技术,广泛应用在高清晰度电视(HDTV)、电视电话、计算机(台式或可移动式)显示器、汽车用及个人数字化终端显示等应用目标上,CRT不再是一支独秀,而是形成与各种平板显示器百花争艳的局面。

在液晶显示技术中采用的液晶材料早已在手表、计算器、膝上型电脑、摄像机中得到应用,液晶材料较早使用的是苯基环己烷类、环己基环己烷类、吡啶类等向列相和手征相材料,后来发展了铁电型(FE)液晶,响应时间在微秒级,但铁电液晶的稳定性差,只能用分支法(side-chain)来改进。目前趋向开发反铁电液晶,因为它们的稳定性较高。

液晶显示材料在大萤幕显示中有一定的困难,目前作为大萤幕显示的主要候选物件为等离子体显示器(PDP)和发光二极体(LED)。PDP所用的荧光粉为掺稀土的钡铝氧化物。用类金刚石材料作冷阴极和稀土离子掺杂的氧化物作发光材料,推动场发射显示(FED)的发展。制作高亮度发光二极体的半导体材料主要为发红、橙、黄色的GaAs基和GaP基外延材料、发蓝光的GaN基和ZnSe基外延材料等。

由于因特网和多媒体技术的迅速发展,人类要处理、传输和储存超高资讯容量达太(兆兆)数字位(Tb,1012bits),超高速资讯流每秒达太位(Tb/s),可以说人类已经进入了太位资讯时代。现代的资讯储存方式多种多样,以计算机系统储存为例,储存方式分为随机记忆体储、线上外储存、离线外储存和离线储存。随机记忆体储器要求整合度高、资料存取速度快,因此一直以大规模整合的微电子技术为基础的半导体动态随机储存器(DRAM)为主,256兆位的随机动态储存器的电晶体超过2亿个。外储存大都采用磁记录方式,磁储存介质的主要形式为磁带、磁泡、软磁碟和硬磁碟。磁储存密度的提高主要依赖于磁介质材料的改进,相继采用了磁性氧化物(如g-Fe2O3、CrO2、金属磁粉等)、铁氧体系、超细磁性氧化物粉末、化学电镀钴镍合金或真空溅射蒸镀Co基合金连续磁性薄膜介质等材料,磁储存的资讯储存量从而有了很大的提高。固体(闪)储存器(flash memory)是不挥发可擦写的储存器,是基于半导体二极体的积体电路,比较紧凑和坚固,可以在记忆体与外存间插入使用。记录磁头铁芯材料一般用饱和磁感大的软磁材料,如80Ni-20Fe、Co-Zr-Nb、Fe-Ta-C、45Ni-55Fe、Fe-Ni-N、Fe-Si、Fe-Si-Ni、67Co-10Ni-23Fe等。近年来发展起来的巨磁阻(GMR)材料,在一定的磁场下电阻急剧减小,一般减小幅度比通常磁性金属与合金的磁电阻数值约高10余倍。GMR一般由自由层/导电层/钉扎层/反强磁性层构成,其中自由层可为Ni-Fe、Ni-Fe/Co、Co-Fe等强磁体材料,在其两端安置有Co-Cr-Pt等永磁体薄膜,导电层为数nm的铜薄膜,钉扎层为数nm的软磁Co合金,磁化固定层用5~40nm的Ni-O、Ni-Mn、Mn-In、Fe-Cr-Pt、Cr-Mn-Pt、Fe-Mn等反强磁体,并加Ru/Co层的积层自由结构。采用GMR效应的读出磁头,将磁碟记录密度一下子提高了近二十倍,因此巨磁阻效应的研究对发展磁储存有着非常重要的意义。

声视领域内镭射唱片和镭射唱机的兴起,得益于光储存技术的巨大发展,光碟存贮是通过调制镭射束以光点的形式把资讯编码记录在光学圆盘镀膜介质中。与磁储存技术相比,光碟储存技术具有储存容量大、储存寿命长;非接触式读/写和擦,光头不会磨损或划伤盘面,因此光碟系统可靠,可以自由更换;经多次读写载噪比(CNR)不降低。光碟储存技术经过CD(Compact Disk)、DVD(Digital Versatile Disk)发展到将来的高密度DVD(HD-DVD)、超高密度DVD(SHD-DVD)过程中,储存介质材料是关键,一次写入的光碟材料以烧蚀型(Tc合金薄膜,Se-Tc非晶薄膜等)和相变型(Te-Ge-Sb非晶薄膜、AgInTeSb系薄膜、掺杂的ZnO薄膜、推拉型偶氮染料、亚酞菁染料)为主,可擦重写光碟材料以磁光型(GdCo、TeFe非晶薄膜、BiMnSiAl薄膜、稀土掺杂的石榴石系YIG、Co-Pt多层薄膜)为主。光碟储存的密度取决于镭射管的波长,DVD盘使用的InGaAlP红色镭射管(波长650nm)时,直径12cm的盘每面储存为4.7千兆位元组(GB),而使用ZnSe(波长515nm)可达12GB,将来采用GaN镭射管(波长410nm),储存密度可达18GB。要读写光盘里的资讯,必须采用高功率半导体镭射器,所用的镭射二极体采用化合物半导体GaAs、GaN等材料。

镭射器除了在光碟储存应用之外,在光通讯中的作用也是众所周知的。由于有了低阈值、低功耗、长寿命及快响应的半导体镭射器,使光纤通讯成为现实。光通讯就是由电讯号通过半导体镭射器变为光讯号,而后通过光导纤维作长距离传输,最后再由光讯号变为电讯号为人接收。光纤所传输的光讯号是由镭射器发出的,常用的为半导体镭射器,所用材料为GaAs、GaAlAs、GaInAsP、InGaAlP、GaSb等。在接受端所用的光探测器也为半导体材料。缺少光导纤维,光通讯也只能是“纸上谈兵”。低损耗的光学纤维是光纤通讯的关键材料,目前所用的光学纤维感测材料主要有低损耗石英玻璃、氟化物玻璃和Ga2S3为基础的硫化物玻璃和塑料光纤等,1公斤石英为主的光纤可代替成吨的铜铝电缆。光纤通讯的出现是资讯传输的一场革命,资讯容量大、重量轻、占用空间小、抗电磁干扰、串话少、保密性强,是光纤通讯的优点。光纤通讯的高速发展为现代资讯高速公路的建设和开通起到了至关重要的作用。

除了有线传播外,资讯的传播还采用无线的方式。在无线传播中最引人注目的发展是行动电话。行动电话的使用者愈多,所使用的频率愈高,现在正向千兆周的频率过渡,电话机的微波发射与接收亦是靠半导体电晶体来实现,其中部分Si电晶体正在被GaAs电晶体所取代。在手机中广泛采用的高频声表面波SAW(Surface Acoustic Wave)及体声波BAW(Bulk Surface Acoustic Wave)器件中的压电材料为a-SiO2、LiNbO3、LiTaO3、Li2B4O7、KNbO3、La3Ga5SiO14等压电晶体及ZnO/Al2O3和SiO2/ZnO/DLC/Si等高声速薄膜材料,采用的微波介质陶瓷材料则集中在BaO-TiO2体系、BaO-Ln2O3-TiO2(Ln=La,Pr,Nd,Sm,Eu,Gd)体系、复合钙钛矿A(B1/3B¢2/3)O3体系(A=Ba,Sr;B=Mg,Zn,Co,Ni,Mn;B¢=Nb,Ta)和铅基复合钙钛矿体系等材料上。

随着智慧化仪器仪表对高精度热敏器件需求的日益扩大,以及手持电话、掌上电脑PDA、膝上型电脑和其它行动式资讯及通讯装置的迅速普及,进一步带动了温度感测器和热敏电阻的大量需求,负温度系数(NTC)热敏电阻是由Co、Mn、Ni、Cu、Fe、Al等金属氧化物混合烧结而成,其阻值随温度的升高呈指数型下降,阻值-温度系数一般在百分之几,这一卓越的灵敏度使其能够探测极小的温度变化。正温度系数(PTC)热敏电阻一般都是由BaTiO3材料新增少量的稀土元素经高温烧结的敏感陶瓷制成的,这种材料在温度上升到居里温度点时,其阻值会以指数形式陡然增加,通常阻值-温度变化率在20~40%之间。前者大量使用在镍镉、镍氢及锂电池的快速充电、液晶显示器(LCD)影象对比度调节、蜂窝式电话和移动通讯系统中大量采用使用的温度补偿型晶体振荡器等中,来进行温度补偿,以保证器件效能稳定;此外还在计算机中的微电机、照相机镜头聚焦电机、印表机的列印头、软盘的伺服控制器和袖珍播放机的驱动器等中,发现它的身影。后者可以用于过流保护、发热器、彩电和监视器的消磁、袖珍压缩机电机的启动延迟、防止膝上型电脑常效应管(FET)的热击穿等。

为了保证资讯执行的通畅,还有许多材料在默默地作著贡献,例如,用于制作绿色电池的材料有:镍氢电池的正、负极材料用MH合金和Ni(OH)2材料、锂离子电池的正、负极用LiCoO2、LiMn2O4和MCMB碳材料等电极材料;行动电话、PC机以及诸如数码相机、MD播放机/录音机、DVD装置和游戏机等数字音/视讯装置等中钽电容器所用材料;现代永磁材料Fe14Nd2B在制造永磁电极、磁性轴承、耳机及微波装置等方面有十分重要的用途;印刷电路板(PCB)及超薄高、低介电损耗的新型覆铜板(CCL)用材料;环氧模塑料、氧化铝和氮化铝陶瓷是半导体和积体电路晶片的封装材料;积体电路用关键结构与工艺辅助材料(高纯试剂、特种气体、塑封料、引线框架材料等),不一而足,这些在浩瀚的材料世界里星光灿烂的新材料,正在数字生活里发挥着不可或缺的作用。

随着科技的发展,大规模积体电路将迎来深亚微米(0.1mm)矽微电子技术时代,小于0.1mm的线条就属于奈米范畴,它的线宽就已与电子的德布罗意数相近,电子在器件内部的输运散射也将呈现量子化特性,因而器件的设计将面临一系列来自器件工作原理和工艺技术的棘手问题,导致常说的矽微电子技术的“极限”。由于光子的速度比电子速度快得多,光的频率比无线电的频率高得多,为提高传输速度和载波密度,资讯的载体由电子到光子是必然趋势。目前已经发展了许多种镭射晶体和光电子材料,如Nd:YAG、Nd:YLF、Ho:YAG、Er:YAG、Ho:Cr:Tm:YAG、Er:YAG、Ho:Cr:Tm:YLF、Ti:Al2O3、YVO4、Nd:YVO4、Ti:Al2O3、KDP、KTP、BBO、BGO、LBO、LiNbO3、K(Ta,Nb)O3、Fe:KnBO3、BaTiO3、LAP等,所有这些材料将为以光通讯、光储存、光电显示为主的光电子技术产业作出贡献。随着资讯材料由电子材料、微电子材料、光电子材料向光子材料发展,将会出现单电子储存器、奈米晶片、量子计算机、全光数字计算机、超导电脑、化学电脑、生物电脑和神经电脑等奈米电脑,将会极大地影响着人类的数字生活。

本世纪以来,以数字化通讯(Digital Communication)、数字化交换(Digital Switching)、数字化处理(Digital Processing)技术为主的数字化生活(Digital Life)正在向我们招手,一步步地向我们走来——清晨,MP3音箱播放出悦耳的晨曲,催我们按时起床;上班途中,开启随身携带的膝上型电脑,进行新一天的工作安排;上班以后,通过网际网路召开网路会议、开展远端教学和实时办公;在下班之前,我们远端启动家里的空调和溼度调节器,保证家中室温适宜;下班途中,开启手机,悠然自在观看精彩的影视节目;进家门前,我们接收网上订购的货物;回到家中,和有线电视台进行互动,观看和下载喜欢的影视节目和歌曲,制作多媒体,也可进入社群网际网路,上网浏览新闻了解天气……这一切看上去是不是很奇妙?似乎遥不可及。其实它正在和将要发生在我们身边,随着新一代家用电脑和网际网路的出现,如此美好数字生活将成为现实。当享受数字生活的同时,饮水思源,请不要忘记为此作出巨大贡献的功臣——绚丽多彩的新材料世界!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7542093.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-06
下一篇 2023-04-06

发表评论

登录后才能评论

评论列表(0条)

保存