你好,很高兴为你解答:
GaN的晶体结构主要有两种,分别是纤锌矿结构与闪锌矿结构。
GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700℃,GaN具有高的电离度,在Ⅲ—Ⅴ族化合物中是最高的(0.5或0.43)。在大气压力下,GaN晶体一般是六方纤锌矿结构。它在一个元胞中有4个原子,原子体积大约为GaAs的一半。因为其硬度高,又是一种良好的涂层保护材料。
氮化镓和氮化钾的区别主要有:1、不同的化学成分:氮化镓是镓元素与氮原子结合而成,而氮化钾是钾元素与氮原子结合而成。
2、不同的物理性质:氮化镓在空气中容易氧化,表面有白银色膜,沉淀条件较为严格;而氮化钾在空气中容易被水解,表面没有明显外壳,沉淀条件比较宽松。
3、不同的应用领域:氮化镓多用于制作抱杆电阻、氧化铝粉、催化剂中;而氮化钾偏用于硝酸和氯酸的反应,同时也可以用于水处理、有机合成等。
以下是氮化镓充电器的详细解释:
氮化镓,分子式GaN,英文名称Gallium nitride,是氮和镓的化合物,是一种直接能隙(direct bandgap)的半导体,氮化镓(GaN)是第三代半导体材料之一。
与第一代和第二代半导体材料相比,第三代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更大的电子饱和度以及更高的抗辐射能力。
GaN具有高禁带宽度、高饱和电子迁移速度、高热导率等特点,因此GaN比Si更适合做大功率高频的功率器件,具有体积小、易散热、损耗小、功率大等优点。应用在充电器上,可以极大的改善功率、体积和发热问题。
氮化镓充电器使用的组件比标准充电器更少,并且体积更小。得益于GaN拥有低损耗和高开关频率的特点,不仅发热更低,同时可以减小变压器和电容的体积。
在功率相同的情况下,GaN技术大幅缩小了充电器的体积。同样功率下,氮化镓充电器体积更小。
氮化镓不存在于自然界,只能在最先进的实验室中制成。氮化镓作为新型第三代化合物,合成环境要求很高,制造成本高成为氮化镓充电器主要缺点。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)