一、单极型晶体管
在目前使用的pnp或npn面结型晶体管的工作中,包括金属-氧化物-半导体晶体管在内的场效应晶体管,只需要一种载流子,这种晶体管就叫做单极晶体管。单极晶体管即场效应晶体管,因为场效应晶体管在工作时,半导体中只有多数载流子起主要作用,所以又称为单极晶体管。
二、双极型晶体管
晶体管全称双极型三极管(Bipolar junction transistor,BJT)又称晶体三极管,简称三极管,是一种固体半导体器件,可用于检波、整流、放大、开关、稳压、信号调制等。
晶体管作为一种可变开关.基于输入的电压,控制流出的电流,因此晶体管可用作电流的开关。和一般机械开关(如Relay、switch)不同的是:晶体管是利用电讯号来控制,而且开关速度非常快,在实验室中的切换速度可达100吉赫兹以上。
扩展资料
双极型晶体管与MOSFET的比较:
1、驱动功率不同
场效应管是压控器件,其栅源极输入阻抗极高,只需要在栅源极间建立电场,即可控制漏源极电流。栅极驱动电压仅在输入端栅源极电容之间建立充电电流,而不直接驱动IDS。
因此,其输入阻抗与电子管相近,这就使得MOSFET器件驱动电路大大简化,用CMOS器件、TTL 器件等均可以组成栅极驱动电路,使整机功耗减小。
2、二次击穿现象不同
二次击穿是指由于双极型晶体管具有正温度系数特性,集电极电流产生的温升使集电极电流上升,如此恶性循环,造成晶体管热击穿。功率MOS管电流IDS为负温度系数,随着温度的升高,电流受到限制,因此不会发生二次击穿现象,安全工作区较双极型器件也更宽。
3、并联使用不同
为了增大MOSFET的工作电流,可以把多个MOS管并联使用。功率MOS器件的导通电阻RDS(ON)具有正温度系数,随着温度的升高,导通电阻也越大。这种特性使得MOS管容易并联,并且在并联使用时漏极电流具有自动均流作用,不必外加均流电阻。
4、开关速度不同
场效应管是一种由多数载流子参与导电的单极型器件,通过控制栅源电压控制产品的开关,无少子存储问题,因而关断过程非常迅速;当驱动脉冲截止时,只要利用简单的放电电路将栅源电容的充电电荷释放即可立即关断。
相比双极型晶体管,功率MOS管具有输入阻抗高、驱动电流小的优点,还具有耐压高、输出功率高、跨导线性好、无二次击穿等优良特性,能够有效提高系统效率、减小设备体积,因此在开关电源、逆变器、功率放大器等电路中使用广泛。
参考资料来源:百度百科-单极晶体管
参考资料来源:百度百科-双极型晶体管
三极管全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件。其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。
三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
三极管的使用:
选用晶体管一要符合设备及电路的要求,二要符合节约的原则。根据用途的不同,一般应考虑以下几个因素:工作频率、集电极电流、耗散功率、电流放大系数、反向击穿电压、稳定性及饱和压降等。这些因素又具有相互制约的关系,在选管时应抓住主要矛盾,兼顾次要因素。
低频管的特征频率fT一般在2.5MHz以下,而高频管的fT都从几十兆赫到几百兆赫甚至更高。选管时应使fT为工作频率的3~10倍。原则上讲,高频管可以代换低频管,但是高频管的功率一般都比较小,动态范围窄,在代换时应注意功率条件。
一般希望β选大一些,但也不是越大越好。β太高了容易引起自激振荡,何况一般β高的管子工作多不稳定,受温度影响大。通常β多选40~100之间,但低噪声高β值的管子(如1815、9011~9015等),β值达数百时温度稳定性仍较好。另外,对整个电路来说还应该从各级的配合来选择β。例如前级用β高的,后级就可以用β较低的管子;反之,前级用β较低的,后级就可以用β较高的管子。
集电极-发射极反向击穿电压UCEO应选得大于电源电压。穿透电流越小,对温度的稳定性越好。普通硅管的稳定性比锗管好得多,但普通硅管的饱和压降较锗管为大,在某些电路中会影响电路的性能,应根据电路的具体情况选用,选用晶体管的耗散功率时应根据不同电路的要求留有一定的余量。
对高频放大、中频放大、振荡器等电路用的晶体管,应选用特征频率fT高、极间电容较小的晶体管,以保证在高频情况下仍有较高的功率增益和稳定性
扩展资料:
三极管放大原理:
1、发射区向基区发射电子
电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。
2、基区中电子的扩散与复合
电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。
3、集电区收集电子
由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。
另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。
参考资料来源:百度百科-三极管
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)