半导电薄膜有哪些

半导电薄膜有哪些,第1张

半导电薄膜只有半绝缘多晶硅薄膜。

半导体薄膜主要有外延生长的Si单晶薄膜和CVD生长的掺杂多晶硅薄膜、半绝缘多晶硅薄膜。

绝缘体薄膜主要有氧化硅薄膜、氮化硅薄膜等。

金属薄膜主要有Al、Au、NiCr等的薄膜。

工艺中用到的薄膜技术光刻胶薄膜。

半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。很多人一直有疑问,半导体材料有哪些? 半导体材料有哪些实际运用?今天小编精心搜集整理了相关资料,来专门解答大家关于半导体材料的疑问,下面一起来看一下吧!

一、半导体材料有哪些?

常用的半导体材料分为元素半导体和化合物半导体。元素半导体是由单一元素制成的半导体材料。主要有硅、锗、硒等,以硅、锗应用最广。化合物半导体分为二元系、三元系、多元系和有机化合物半导体。二元系化合物半导体有Ⅲ-Ⅴ族(如砷化镓、磷化镓、磷化铟等)、Ⅱ-Ⅵ族(如硫化镉、硒化镉、碲化锌、硫化锌等)、Ⅳ-Ⅵ族(如硫化铅、硒化铅等)、Ⅳ-Ⅳ族(如碳化硅)化合物。三元系和多元系化合物半导体主要为三元和多元固溶体,如镓铝砷固溶体、镓锗砷磷固溶体等。有机化合物半导体有萘、蒽、聚丙烯腈等,还处于研究阶段。

此外,还有非晶态和液态半导体材料,这类半导体与晶态半导体的最大区别是不具有严格周期性排列的晶体结构。制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。

  二、半导体材料主要种类

半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。

1、元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性半导体材料的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态B、Si、Ge、Te具有半导性Sn、As、Sb具有半导体与金属两种形态。

2、无机化合物半导体:分二元系、三元系、四元系等。 二元系包括:①Ⅳ-Ⅳ族:SiC和Ge-Si合金都具有闪锌矿的结构。

  3、有机化合物半导体:已知的有机半导体有几十种,熟知的有萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,它们作为半导体尚未得到应用。

  4、非晶态与液态半导体:这类半导体与晶态半导体的最大区别是不具有严格周期性排列的晶体结构。

  三、半导体材料实际运用

制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。

半导体材料所有的半导体材料都需要对原料进行提纯,要求的纯度在6个“9”以上,最高达11个“9”以上。提纯的方法分两大类,一类是不改变材料的化学组成进行提纯,称为物理提纯另一类是把元素先变成化合物进行提纯,再将提纯后的化合物还原成元素,称为化学提纯。物理提纯的方法有真空蒸发、区域精制、拉晶提纯等,使用最多的是区域精制。化学提纯的主要方法有电解、络合、萃取、精馏等,使用最多的是精馏。由于每一种方法都有一定的局限性,因此常使用几种提纯方法相结合的工艺流程以获得合格的材料。

绝大多数半导体器件是在单晶片或以单晶片为衬底的外延片上作出的。成批量的半导体单晶都是用熔体生长法制成的。直拉法应用最广,80%的硅单晶、大部分锗单晶和锑化铟单晶是用此法生产的,其中硅单晶的最大直径已达300毫米。在熔体中通入磁场的直拉法称为磁控拉晶法,用此法已生产出高均匀性硅单晶。在坩埚熔体表面加入液体覆盖剂称液封直拉法,用此法拉制砷化镓、磷化镓、磷化铟等分解压较大的单晶。悬浮区熔法的熔体不与容器接触,用此法生长高纯硅单晶。水平区熔法用以生产锗单晶。水平定向结晶法主要用于制备砷化镓单晶,而垂直定向结晶法用于制备碲化镉、砷化镓。用各种方法生产的体单晶再经过晶体定向、滚磨、作参考面、切片、磨片、倒角、抛光、腐蚀、清洗、检测、封装等全部或部分工序以提供相应的晶片。

以上就是小编今天给大家分享的半导体材料的有关信息,主要分析了半导体材料的种类和应用等问题,希望大家看后会有帮助!想要了解更多相关信息的话,大家就请继续关注土巴兔学装修吧!

透明导电薄膜。虽然目前电阻率等性能仍较低,但由于材料成本低、制造工艺简单,因此有望替代ITO用作液晶显示器等的透明导电薄膜。 空心阴极法生长半导体薄膜.

以非晶态半导体材料为主体制成的固态电子器件。非晶态半导体虽然在整体上分子排列无序,但是仍具有单晶体的微观结构,因此具有许多特殊的性质。1975年,英国W.G.斯皮尔在辉光放电分解硅烷法制备的非晶硅薄膜中掺杂成功,使非晶硅薄膜的电阻率变化10个数量级,促进非晶态半导体器件的开发和应用。同单晶材料相比,非晶态半导体材料制备工艺简单,对衬底结构无特殊要求,易于大面积生长,掺杂后电阻率变化大,可以制成多种器件。非晶硅太阳能电池吸收系数大,转换效率高,面积大,已应用到计算器、电子表等商品中。非晶硅薄膜场效应管阵列可用作大面积液晶平面显示屏的寻址开关。利用某些硫系非晶态半导体材料的结构转变来记录和存储光电信息的器件已应用于计算机或控制系统中。利用非晶态薄膜的电荷存储和光电导特性可制成用于静态图像光电转换的静电复印机感光体和用于动态图像光电转换的电视摄像管的靶面。

具有半导体性质的非晶态材料。非晶态半导体是半导体的一个重要部分。50年代B.T.科洛米耶茨等人开始了对硫系玻璃的研究,当时很少有人注意,直到1968年S.R.奥弗申斯基关於用硫系薄膜制作开关器件的专利发表以后,才引起人们对非晶态半导体的兴趣。1975年W.E.斯皮尔等人在硅烷辉光放电分解制备的非晶硅中实现了掺杂效应,使控制电导和制造PN结成为可能,从而为非晶硅材料的应用开辟了广阔的前景。在理论方面,P.W.安德森和莫脱,N.F.建立了非晶态半导体的电子理论,并因而荣获1977年的诺贝尔物理学奖。目前无论在理论方面,还是在应用方面,非晶态半导体的研究正在很快地发展著。

分类 目前主要的非晶态半导体有两大类。

硫系玻璃。含硫族元素的非晶态半导体。例如As-Se、As-S,通常的制备方法是熔体冷却或汽相沉积。

四面体键非晶态半导体。如非晶Si、Ge、GaAs等,此类材料的非晶态不能用熔体冷却的办法来获得,只能用薄膜淀积的办法(如蒸发、溅射、辉光放电或化学汽相淀积等),只要衬底温度足够低,淀积的薄膜就是非晶态结构。四面体键非晶态半导体材料的性质,与制备的工艺方法和工艺条件密切相关。图1 不同方法制备非晶硅的光吸收系数 给出了不同制备工艺的非晶硅光吸收系数谱,其中a、b制备工艺是硅烷辉光放电分解,衬底温度分别为500K和300K,c制备工艺是溅射,d制备工艺为蒸发。非晶硅的导电性质和光电导性质也与制备工艺密切相关。其实,硅烷辉光放电法制备的非晶硅中,含有大量H,有时又称为非晶的硅氢合金;不同工艺条件,氢含量不同,直接影响到材料的性质。与此相反,硫系玻璃的性质与制备方法关系不大。图2 汽相淀积溅射薄膜和熔体急冷成块体AsSeTe的光吸收系数谱 给出了一个典型的实例,用熔体冷却和溅射的办法制备的AsSeTe样品,它们的光吸收系数谱具有相同的曲线。

非晶态半导体的电子结构 非晶态与晶态半导体具有类似的基本能带结构,也有导带、价带和禁带(见固体的能带)。材料的基本能带结构主要取决於原子附近的状况,可以用化学键模型作定性的解释。以四面体键的非晶Ge、Si为例,Ge、Si中四个价电子经sp杂化,近邻原子的价电子之间形成共价键,其成键态对应於价带;反键态对应於导带。无论是Ge、Si的晶态还是非晶态,基本结合方式是相同的,只是在非晶态中键角和键长有一定程度的畸变,因而它们的基本能带结构是相类似的。然而,非晶态半导体中的电子态与晶态比较也有著本质的区别。晶态半导体的结构是周期有序的,或者说具有平移对称性,电子波函数是布洛赫函数,波矢是与平移对称性相联系的量子数,非晶态半导体不存在有周期性, 不再是好的量子数。晶态半导体中电子的运动是比较自由的,电子运动的平均自由程远大於原子间距;非晶态半导体中结构缺陷的畸变使得电子的平均自由程大大减小,当平均自由程接近原子间距的数量级时,在晶态半导体中建立起来的电子漂移运动的概念就变得没有意义了。非晶态半导体能带边态密度的变化不像晶态那样陡,而是拖有不同程度的带尾(如图3 非晶态半导体的态密度与能量的关系 所示)。非晶态半导体能带中的电子态分为两类:一类称为扩展态,另一类为局域态。处在扩展态的每个电子,为整个固体所共有,可以在固体整个尺度内找到;它在外场中运动类似於晶体中


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7606217.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-07
下一篇 2023-04-07

发表评论

登录后才能评论

评论列表(0条)

保存