面对比较复杂的科目,初学者可能会遇到这种情况——学了好几章,仍然云里雾里,不知自己在学什么,接下来又要学什么。等到学完,只记得一些零零散散的知识点,无法形成完整体系。这可能是因为忽略了一些内容,那就是这个科目的框架。
接下来以刘恩科《半导体物理学(第七版)》为参考书,讲讲半导体物理学的框架。当然,同样的知识可以有很多种分类方式,我非常鼓励大家按自己的理解去划分,以下内容可供参考借鉴。
这本《半导体物理学》共13章,但大部分本科课程及考研大纲,重点在1~8章(半导体的电效应),剩余章节仅对少量内容作要求。
按大的来分,就是两个部分:1~9章是半导体的电效应(核心)、10~13章是其他效应和拓展。再分细一点,我们可以把整本书分为四个部分:
第一部分:固体物理基础(1,2章)
第二部分:载流子的性质(3,4,5章)
第三部分:器件结构(6,7,8,9章)
第四部分:其他效应及拓展(10,11,12,13章)
——————————
第1章 半导体中的电子状态
第2章 半导体中的杂质和缺陷能级
第一部分,主要解决【半导体是什么】、【半导体中有什么】这两个问题。
首先介绍半导体作为晶体的性质:晶格结构,以及晶体的能带。
然后介绍半导体中有什么:载流子(电子和空穴),以及杂质等缺陷。
电子和空穴这两种载流子,决定了半导体的电、光、热、磁等基本性质。而杂质,则是调控半导体这些性质最重要的手段。
——————————
第3章 半导体中载流子的统计分布
第4章 半导体的导电性
第5章 非平衡载流子
第二部分中,主要解决【如何调控载流子浓度】、【如何调控半导体电学性质】这两个问题。
第3章介绍“温度、杂质浓度和载流子浓度的关系”。温度和杂质浓度对载流子浓度有决定性的影响,控制这两个量,就能控制载流子浓度,调控半导体的各种性质。
第4章介绍“温度、杂质浓度和导电性的关系”。从σ=nqμ知道,半导体导电性主要受载流子浓度、迁移率的影响,其中迁移率主要受散射影响。无论是载流子浓度还是散射,都由温度和杂质浓度控制。因此,确定了温度和杂质浓度,就能调控半导体的导电性。
第5章介绍“载流子的动态变化”。载流子不是静态的,它有产生、复合、扩散、漂移等活动,载流子浓度会因此发生动态变化。我们据此采取措施,可以进一步调控载流子浓度。
——————————
第6章 pn结
第7章 金属和半导体的接触
第8章 半导体表面与MIS结构
第9章 半导体异质结构
第三部分主要解决【半导体有什么用】这个问题。
半导体最重要的性质就是电效应,1~9章都在讲电效应,后面的10~13章,研究方法与电效应是相通的。
半导体电效应的应用,最重要的就是6~9章对应的四种结构——pn结、肖特基结、MIS结构、异质结。重中之重是pn结和MIS结构,它们是信息时代的基石。
基于pn结的双极晶体管,是集成电路的滥觞,它的问世掀起了一场技术革命,让人类社会从工业时代进入了信息时代。
基于MIS结构的场效应晶体管,占今天所用晶体管的绝大部分(具体比例没查到,可能要高于99%)。你现在拿着的手机里,就有几十亿、上百亿个基于MIS结构的场效应晶体管。[1]
——————————
第10章 半导体的光学性质和光电与发光现象
第11章 半导体的热电性质
第12章 半导体磁和压阻效应
第13章 非晶态半导体
第四部分,解决的是【半导体还有什么用】、【介绍特殊的半导体】这两个问题。
光、热、磁效应的研究方法,与电效应是相通的,也是从载流子、能带、温度、杂质这几个方面去研究。看看采取什么措施能调控这些性质,能做出什么有用的器件。
1~12章的内容都是基于半导体晶体,因为我们日常所用的绝大部分半导体,都是晶态半导体。但除此之外,还有一种特殊的半导体——非晶态半导体。
如果要对非晶态半导体进行研究,方法和1~12章是一样的,我们同样按以下顺序,解决非晶态半导体的问题即可:
【半导体是什么】
【半导体中有什么】
【如何调控载流子浓度】
【如何调控半导体电学性质】
【半导体有什么用(电效应)】
【半导体还有什么用(光热磁)】
——————————
怎么样,现在对半导体物理学的框架有概念了吧?在接下来的学习过程中,一步步解决问题,就能学懂半导体物理了。加油!
怎样学好半导体物理?
武忠祥这个是在营销吗?
PS. 写干货好累啊,一不小心就到一两点了。真吃不消。少熬夜。休息一段时间。
参考文献:[1] 麒麟9000集成153亿晶体管
首先祝贺你赶上了好时代啊,我九十年代在学校读书,《集成运放》差点考了100分,连IC长什么样子都没见过,一点感性认识没有。
IC,是集成电路的简写(Integrated Circuit),这个用途非常广,比如电脑主板上贴了许多电子元件,其中一些就是IC;再比如,你找个修手机地方看看,手机主板上贴了许多电子元件,有些就是IC. 在学半导体物理时,觉得不知道是做什么的,就想想无处不在的电脑手机,其硬件的核心就是半导体。《半导体物理》是集成电路的基础课程之一,其它还有《数字电路》《模拟电路》等。
IC,从设计到制造,简直是人类的杰作,是个无比精密的东西。你想要多点实践,可以看看一些半导体公司的网站,如有师兄/师姐/其他朋友在半导体公司上班,可以找个时间去公司拜访实地看看,问一问聊一聊(现在半导体公司很多的,不难实现噢)!
楼上回答的也太。。。。教材也不是很适合初学,也不是很好的教材。我觉得要看你对自己的要求有多高了,我是物理专业的,本科时修半导体是在大三下,我们学的很深,不知道你是什么专业的,如果你学有余力而且想学好学懂量子力学的话推荐你还是按部就班,打好基础,看好一点的书籍。
关于基础,数学方面,高数线代就不用说了,肯定很重要,但复变函数和数理方程也要会。物理方面,经典力学,lagrange力学和hamilton力学要理解好。
关于教材,我来对几本书粗略点评,楼主看自己需要吧。1,朗道,《非相对论量子力学》,从头开始讲起,思路清晰,物理韵味浓厚,但内容过于冗长繁多,不太适合第一遍看。2,狄拉克的量子力学,数学很强大,坚持下来必定受益良多,不足是数学偏多,符号也太旧,让人没有看下去的动力。3,cohen的量子力学,没记错的话是德国人,书写的让看的舒服不已,自学上品,作为第一遍看是很好的选择。可以说是完美,非要说缺点的话就是写太好了,未免让读者失去了自己思考的余地。cohen的量子力学是一套丛书了,看完最基本的想继续往上看也很方便,有一本专门讲symmetry的是我觉得讲群论最好的一本书,总而言之,跟着cohen混就绝对爽爆你。4,强烈推荐第二遍看量子力学用Sakurai,日本人的那本量子力学,让你一下站在一个高度看整个量子力学,思路非常新颖,看完就会上另一个层次,但是这本书的作者在写完第三章后就挂了,所以推荐看前三章就好了,后面开始就没有那么精辟了,要不是因为作者挂的早,这本书绝对可以评为史上最伟大的量子力学书了。5,Shankar的量子力学原理,思路常规,讲希尔伯特空间讲的还可以,作为第二遍读物也是不错的选择。一时间也想不起来其他的了,因为也没功夫看那么多。如果你是想看更进阶的书在和我说,我在推荐给你几本。基本的量子力学大概看这些就可以了。
如果看英文比较吃力的话可以考虑张永德的量子力学,我本科时候的教材,看了下,物理概念方面讲的还是可以的,有一些不太清楚的地方,正好可以自己多思考思考。此外还可以考虑曾谨言的,没看过,但应该还可以。哦对了,最后又想起来了。如果你现在量子力学基础已经不错了,但又对量子力学背后深邃的数学原理比较感兴趣,强烈推荐你一本我现在正在抽时间看的一本书,法国数学家迪斯米埃的谱理论讲义,让你一眼看穿量子力学中的数学原理,学的一点疑问都没有。
最后关于半导体物理,半导体物理你想完全学懂是不可能大二开的,可能比较偏技术应用了。想完全学懂肯定要有固体物理和统计力学的基础的,而这两门课都要以需要量子力学的基础才能学懂。
如果你只是想粗略了解一下量子力学,就当我我没说吧,我也不太了解如何粗略了解量子力学。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)