第三代半导体材料碳化硅发展历程及制备技术

第三代半导体材料碳化硅发展历程及制备技术,第1张

本文说说碳化硅的那些事。 碳化硅材料的发展 历史 比较久远,1824年瑞典化学家Berzelius在人工生长金刚石的过程中发现了碳化硅SiC。1885年Acheson用焦炭和硅石的混合物以及一定量氯化钠在熔炉中高温加热,制备出了小尺寸碳化硅晶体,但存在大量缺陷。 碳化硅材料的应用始于20世纪初。1907年美国Round制造出第一个碳化硅发光二极管;1920年碳化硅单晶作为探测器用于早期的无线电接收机上。不过因为单晶生长难度较大,碳化硅在很长一段时间内没有很好的应用,到了1955年飞利浦发明了一种采用升华法制备高质量碳化硅的新方法即Lely法,碳化硅材料再次焕发生机。 七八十年代碳化硅的制备及应用实现重大突破。1978年前苏联科学家Tairov等人改良了Lely法,可以获得较大尺寸的碳化硅晶体。1979年第一个碳化硅发光二极管问世;1981年Matsunami发明了在硅衬底上生长碳化硅单晶的方法;1991年美国公司Cree采用升华法生长出碳化硅晶片并实现产业化。 目前碳化硅及其应用呈现出以下几个特点:第一是晶圆尺寸实现大尺寸化,Cree的6英寸碳化硅晶片实现产业化,并积极推进8英寸晶片的产业化。第二晶体缺陷密度不断下降,比如4英寸碳化硅单晶微管密度下降至0.1cm^-2以下,穿透性螺位错和基平面位错密度控制在10^2cm^-2。第三碳化硅基功率器件不断涌现,除了特斯拉和蔚来 汽车 在电动车上使用了SiC-MOSFET,还发展出了SBD、HMET等器件。当然第四点相比硅基半导体的奋起直追,中国在碳化硅第三代半导体上与国外发展水平基本持平,衬底方面天科合达等实现了4英寸的产业化和6英寸的技术突破,并积极向8英寸推进;山东天岳等公司拥有相应的外延生长技术。在器件制造上扬杰 科技 、士兰微等也积极推进碳化硅基功率半导体的产业化。 碳化硅材料的特性之一就是拥有超过200多种晶体结构,每一种结构对应的电学性能等存在一定差异。目前主要是六角4H、六角6H和菱方15R等,其中4H和6H实现产业化: 总体上相比氮化镓和硅等,碳化硅材料拥有最高的热导率、较高的带隙、电子迁移率和饱和电子速率等,可以制造能在高温、高压、更高功率和更高工作频率等情形下的器件。 在具体应用方面,碳化硅主要实现了以下应用:第一是碳化硅为衬底制备高亮度和超高亮度蓝绿InGaN铟镓氮LED;第二是实现了KV级高压MOSFET器件制造,比如罗姆半导体生产的1200V、35A的SiC-MOSFET;第三是用于300V到1200V甚至3300V等更高压的碳化硅基肖特基势垒管SBD的制造;第四是在半绝缘碳化硅衬底上制备氮化镓、铝镓氮AlGaN高电子迁移率晶体管HEMT;第五是在SiC-IGBT上有所突破,实现了P沟道IGBT的制造。 在碳化硅材料制备上,1955年飞利浦提出了Lely法,也称升华法。Lely法的基本原理是:在空心圆筒状石墨坩埚中(最外层石墨坩埚,内置多孔石墨环),将具有工业级纯度的碳化硅粉料投入坩埚与多孔石墨环之间加热到2500度,碳化硅在此温度下分解与升华,产生一系列气相物质比如硅单晶、Si2C和SiC2等。由于坩埚内壁与多孔石墨环之间存在温度梯度,这些气相物质在多孔石墨环内壁随机生成晶核。总的来说Lely法产率低,晶核难以控制,而且会形成不同结构,尺寸也有限制。 目前碳化硅材料制备多采用改进Lely法、高温CVD法和溶液法,其中以改进Lely法为主流。 改进Lely法也称物理气相传输法PVT,是前苏联科学家Tairov和Tsvetkov于1978年提出的。改进Lely法使用了工作频率10-100KHz的中频感应加热单晶炉,在生长过程中加入籽晶用于控制晶核和晶向: 在改进Lely法中碳化硅单晶生长主要经历低温高真空阶段、高压升温阶段、高压保温成核阶段、降压生长阶段、恒压恒温生长阶段和升压冷却阶段等六个阶段。当然在具体生长过程中,为了制备符合要求的碳化硅单晶,降低微管、位错密度等缺陷,会对籽晶的籽晶面等适当微调,在此不再展开。 碳化硅单晶有绝缘型、半绝缘型之分,按照掺杂类型还有P型掺杂和N型掺杂之分,无形中提升了碳化硅的制备难度。比如制备功率器件的是N型4H-SiC衬底,器件要求衬底电阻率小于20毫欧姆*厘米,制备低电阻率的N型4H-SiC常用高浓度N掺杂,但随着掺杂浓度提高,单晶中位错密度会升高。Kato等人提出的氮、铝共掺杂技术制备出了低电阻率的N型4H-SiC单晶,所用的单晶炉有两套加热系统,其中上部加热系统与普通Lely法相同,主要对SiC原料加热并为单晶生长提供合适的温度;下部加热系统为铝原料加热。这样通过对生长压力、温度等参数调整,可以实现有效的氮、铝共掺杂。 碳化硅的外延主要采用化学气相沉积CVD,以后再说。

近期半导体板块走的不错,很多个股底部放量,走出了不错的气势。

可以回顾:

中美关税对抗即将结束,新机遇从 科技 股开始!

科技 股的逻辑不仅仅来自于光刻胶的行业消息。

更重要的是中美对抗的逻辑已发生根本的变化。

美国虽然依然会遏制 科技 的发展,但对于中端产品线会放开限制,只遏制高端,而不是前任的模式通杀。

这就给国内的产业链提供很大的发展机会。

但我们依然要看到,未来中国在自主化产业链上的投入,越来越多越来越深入

华为就是最好的自主投入产业链的案例。

从芯片设计,到全产业链的投资。

更少不了第三代半导体的大笔投入。

山东天岳先进准备冲击上市!

主要从事碳化硅衬底的研发,制造和销售。

为何华为亲自下场投了呢?

很简单,国际大厂已经在引领潮流。

特斯拉Model 3车型就使用了英飞凌和意法半导体的碳化硅单管。

碳化硅单管就是未来的大趋势,替代传统硅基IGBT。

当然除此之外,华为自己的5G基站,也要大量使用此类产品。

未来碳化硅百亿市场规模只是开始,国内各大厂商都已经开始投入研发和新的长线,争夺赛道领导权。

华为早早布局了这个产业,5G和新能源车,都是华为必争之战略要地。

看懂华为的布局,你就能先人一步看懂产业发展发现和逻辑!

这个时候,速度就是最重要的,谁先商业化量产,谁就先成功。

目前正在赛道上比拼的还有很多

传统有MOSFET技术优势的厂商:华润微,士兰微,扬杰 科技

之前写了一个科普文,介绍这些公司,可见前文:

汽车 缺芯预计长达半年!这七家公司闷声发财!

正在布局的厂商:三安光电,露笑 科技 ,楚江新材

据集微网消息:

露笑 科技 的主要产品为6英寸导电型碳化硅衬底片,设备已经进场安装调试,这意味着实验室早已成功做出样片,按理应该同步进行客户端验证,否则产品做出来卖给谁?目前导电型碳化硅最佳落地应用应该是 汽车 功率半导体领域,消息圈有传言露笑 科技 已经与国内某车企的工艺负责人有实质性接触,极有可能已经开始做产品验证

我去翻阅了官方的董秘问答内容。也看到了类似回复。

可见5月28日回复。

露笑 科技 答投资者提问碳化硅进展

答:公司经过多年艰苦卓绝的努力,在第三代半导体碳化硅这个颠覆性材料的技术方面取得突破,目前设备已经开始安装调试。

赛道刚刚发力,就有人抢跑。

现在有产品才是王道,筹划中和产品验证天差地别。

谁先拿出商业化战绩,谁就第一时间获取大量订单!

后续IGBT以及碳化硅的方向,会是市场游资和机构追逐的战场。

目前国际巨头美国CREE公司垄断了碳化硅70%的产能,且5年内的产能被意法,英飞凌,罗姆等公司长协订单绑定。

业绩和领先优势双驱动,就是最好的抱团标的,走过路过不要错过了!

风险提示:相关个股已经发力,追高有风险。

本文仅讨论行业基本面信息,请勿作为买入依据。

不同于第一代半导体材料硅基的发展在国内正面临一系列掣肘,作为化合物半导体材料的碳化硅器件正逐渐迎来商用加速期。

特斯拉率先让碳化硅器件上车起到了关键推动作用。多方机构都预测,在未来5-10年间,碳化硅器件的应用增长点会陆续涌现,包括新能源 汽车 、储能、光伏风能发电、5G通信等领域。

碳化硅商用落地的典型代表就是特斯拉,在其推动下,碳化硅的应用进度和市场空间都打开了想象力。

基本半导体董事长汪之涵在前述论坛演讲中指出,从1982年IGBT发明到现在,其仍然是功率半导体器件中最为重要的一个,在各种电力电子应用中发挥着巨大作用。

不过在过去几年时间里,人们欣喜地发现,在很多高端应用中,碳化硅MOSFET已经逐渐取代硅基IGBT。“这个取代的过程和势头,似乎比大家前几年的判断来得更早更快,所以我们认为,碳化硅成为功率半导体主流的时代似乎已经来到。”他续称,虽然目前碳化硅器件的成本比硅基IGBT要高不少,但从全生命周期成本来看,通过使用碳化硅器件,现在的账已经能算过来了。

根据Yole研判,到2027年预计全球碳化硅芯片市场规模约63亿美元,其中接近80%的市场(也即约50亿美元)来自于新能源 汽车 。汪之涵指出,根据其团队测算,随着碳化硅产品成本降低,到2027年,一辆车上不同部件使用碳化硅的价格在2000-3000元,那么届时全球将有一千万辆车使用碳化硅器件,实际上这个数量将只多不少。

芯粤能半导体CTO相奇则指出,“双碳”战略正开启新能源转换的黄金时代,其中电能转换推动需要功率器件,碳化硅器件在其中优势尽显。

根据机构统计,到2030年,中国大陆总用电量将达到10.5万亿度/年,若能用碳化硅功率器件替代传统硅基器件,可节电万亿度,约等于10座三峡大坝。

从应用端来看,新能源 汽车 、光伏和储能、航天、工业等领域牵引下,全球碳化硅市场的规模正快速成长,预计2019-2025年的复合年均增长率为30%。

山东大学晶体材料实验室、南砂晶圆教授徐现刚也指出,碳化硅单晶应用主要为两个方面:一是电力电子碳化硅器件领域,在导电型衬底之上做碳化硅同质外延,如新能源 汽车 、高铁运输、智能电网的逆变器等器件上应用;二是把碳化硅作为衬底材料,生长氮化镓材料的异质外延,在高频大功率微波电子器件里获得了较大应用,也在雷达、通信系统等方面有应用。

不过,目前国内在碳化硅功率器件和衬底市场依然有较大发展空间。据调研机构Yole统计,无论是碳化硅器件销售额,还是碳化硅导电型衬底市场视角来看,占据主要份额的都为来自美国、欧洲和日本的公司,部分情况下甚至有垄断态势。

一种观点认为,在关键碳化硅衬底技术方面,国内和海外厂商的差距大约是2-3年,但随着集中力量推进研发,这个时间差距有望进一步缩短。

徐现刚在演讲中指出,从衬底发展来看,海外厂商在十年前突破了6英寸衬底技术,目前已稳定导入产业;并在国内“十三五”期间突破了8英寸衬底量产的关键难题,正快速导入量产进程。

国内厂商近些年来也在积蓄经验后快速推动研发落地。“针对碳化硅单晶的研究前期,我们亟需和下游密切配合。在研发2-3英寸单晶时,很难找到电力电子大规模应用,所以我们找到了光电子应用;在6英寸和8英寸单晶上,我们希望和半导体界以及电力电子行业密切配合,也做好了准备。产业角度的需求已经非常旺盛;技术路线上,碳化硅外延的整个产业链不存在被制约发展的问题,所以我认为,8英寸时代真正到来了。”

他续称,就像最开始一种观点认为硅基不用那么着急被碳化硅器件替代一样。特斯拉作为第一个吃螃蟹的人成功之后,大家都开始积极跟进,才有了现在被认为行业将爆发式增长的预期。“所以我想碳化硅晶圆尺寸发展也一样,成熟的8英寸衬底推出后,必然会让成本降低。当然先要面对研发、材料良率低等现阶段难题,但实际上随着技术进步,这也是之前6英寸研发过程中都遇到过的情况。”

还有一个不可忽视的问题是各地的积极建设。一些行业人士指出,在未来十年,整个碳化硅行业面临着巨大机会,同时挑战也很大。目前国内多个省份和城市已经开始推动碳化硅材料和器件等环节的大规模项目落地,这一方面意味着各地都在认可碳化硅的发展未来并积极促进,但另一方面,大规模建设后,在未来几年可能也会面临行业整合过程。

同时,目前南沙在碳化硅领域的产业链已经部署相对完善。“我们称为‘聚沙成塔’,打开地图看会发现,南沙的确是一家一家公司拼图一样拼出了一个产业园,从南砂晶圆开始不断延伸产业链。因此我们认为,南沙发展半导体产业有其独特的思路和节奏。”

更多内容请下载21 财经 APP


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7612002.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-07
下一篇 2023-04-07

发表评论

登录后才能评论

评论列表(0条)

保存