电池是怎么制造的?

电池是怎么制造的?,第1张

锂离子电池的生产工艺步骤:

第一步:需要准备好电极材料,把正负极材料在反应釜里合浆,即在反应容器里将正负极材料制作好。

第二步:涂片,所谓涂片就是把制作好的浆液均匀涂抹在电极载流体上面。下面是烘片,使浆液里的水分和其他的可挥发性有机物挥发掉。烘完片之后是排片,排片就是把电池极片按照制作工艺要求排列成需要的样子。之后是对极片的进一步调整,例如将极片上的一些肉眼可见的粉末刷掉,或者用液压和对滚的方式将极片压平等。

第三步:将电极卷绕,然后包裹起来形成电芯。这时虽然还没有加入电解液,电池还不能正常工作,但是已经可以测量到电压和电阻了。因此,在这个制作结点就会开始对电池进行一系列的检测,例如检测电池是否存在短路和断路等,这就能剔除一部分残次品。

第四步:制作完成之后的电芯通常会被装入钢壳之内,这时已经基本具备了电池的外形。下面一个比较重要的步骤是装入电解液,之后还要经历焊接和封口一类的 *** 作,再通过严格的气密性的检测,一块普通手机用的锂电池就制作完成了。

第五步:在专门的车间对生产好的电池进行“化成” *** 作。所谓化成就是对电池的正负极材料进行激活的过程,经过化成的电池将在正负极表面形成一个钝化膜。这一步骤是非常重要的,在电池出厂之前通常一定会对电池进行化成 *** 作,激活正负极,使电池形成这样一层膜。此外这一步骤对化成设备的要求也很高,要求激活电池的电流信号要尽量保持精准和平稳,不能有太大的波动。

第六步:检测:有些电池在出厂之前还要进行一些列的检测(主要包括电芯检测、气密性检测、成型之后的化成环节和耐久度检测等环节),例如让一块电池进行几十次的充放电循环,初步测试一下电池的性能。

原子层沉积 (Atomic layer deposition,ALD) 是一种高度可控的薄膜合成工艺,可制造出只有一个原子厚的薄膜。广泛应用于计算机芯片、太阳能电池、锂电池等领域。很多企业常用 ALD 来制造半导体器件。ALD 的灵活性和多样性给确定工艺参数带来了重大挑战,但仍需要专家的直觉和耗时的反复试验来确定最佳工艺参数。

最近,来自美国能源部(DOE)阿贡国家实验室的研究人员 描述了多种基于 AI 的方法来自动优化 ALD 工艺。详细说明了每种方法的相对优势和劣势,以及可用于更有效、更经济地开发新流程的见解。

该研究以《用于优化原子层沉积的智能代理》「 Intelligent Agents for the Optimization of Atomic Layer Deposition 」为题发表在《 ACS Appl. Mater. Interfaces 》杂志上。

前沿,但也面临挑战

ALD是一种工艺,通过前驱体蒸气和基板表面之间的一系列自限反应,在基板上沉积原子厚度的均匀薄膜。ALD 可访问大量的元素和化合物目录,元素周期表中超过一半的元素在出现在ALD过程中。

ALD 擅长在复杂的 3D 表面上生长精确的纳米级薄膜,例如在硅晶片上形成图案的深而窄的沟槽,以制造当今的计算机芯片。 这促进了科学家为下一代半导体器件开发新的薄膜 ALD 材料。

然而,开发和优化这些新的 ALD 工艺是具有挑战性和劳动密集型的。研究人员必须考虑许多可以改变这一过程的不同因素,包括:分子前体之间的复杂化学反应;反应器设计、温度和压力;前驱体剂量和吹扫时间。

为了找到克服这些挑战的方法,阿贡科学家评估了 三种新型优化策略 :(a)随机选择气体时间;(b) 基于高斯过程代理模型的贝叶斯优化 (BO),以及 (c) 基于规则的专家系统方法,利用人类策略和物理直觉。值得注意的是, 后两种使用不同的 AI 方法,且以前从未应用于 ALD。

Table 1 列出了该研究的四种ALD 工艺模型:Al2O3 在 200 下使用三甲基铝 (TMA) 和 H2O,Al2O3 在 100 下使用 TMA 和 H2O,W 在 200 下使用六氟化钨 (WF6) 和乙硅烷 (Si2H6),TiO2 使用钛 (IV) 异丙醇 (TTIP) 和 200 下的 H2O。

敏感性分析

在比较所有四种ALD工艺模型的三种优化策略之前, 了解关键超参数对成本函数和优化性能的影响非常重要。 可确保在平等的基础上比较优化策略。以在 200 下生产 Al2O3 薄膜为例,研究ALD 系统的效果。

专家系统方法对关键超参数的值很敏感。 首先,专家系统策略需要指定一组起始时间。尝试了多种分配初始时序的方法,包括使用统一时序(所有时序相同)和随机时序(时序在优化边界之间随机初始化)。 探索 发现统一的初步计时产生了可靠的性能。

此外, 专家系统优化策略对给定时序所采用的重复 ALD 周期数也很敏感。 相比之下, 贝叶斯优化策略对采用的重复次数相对不敏感。

优化策略比较

研究人员通过比较他们如何优化 ALD 中使用的两种前驱体的剂量和清洗时间来评估他们的三种策略。加药时间(dosage time)是指前体加入反应器的时间,而吹扫时间是指去除多余的前体和气态化学产品所需的时间。

目标: 找到可以在最短的时间内实现高且稳定的薄膜生长的条件。 科学家们还使用代表反应堆内 ALD 过程的模拟来判断他们收敛到理想时间集的速度策略。

将他们的优化方法与模拟系统联系起来,让他们能够根据优化算法生成的处理条件,在每个循环后实时测量薄膜的生长情况。

研究人员比较了四种 ALD 工艺的三种优化策略的性能。通过比较了 Al2O3 薄膜在 200 C 下0.1%和10%噪声水平下生长的优化策略性能。研究表明: 在这两个噪声水平上,贝叶斯优化的性能最好,其次是专家系统,然后是低测量噪声的随机策略,高测量噪声的反向策略。

除了考虑给定优化算法在接近一组最优 ALD 时序时的效率之外,实际考虑也很重要,例如 CVD 类型生长(如果选择了不适当的低吹扫时间),从而使反应器结垢,对 ALD 反应器安全可靠运行的影响。实验表明:专家系统方法完全避免了不受控制的生长,而随机优化策略则始终对产生过量CVD型增长的条件进行采样。贝叶斯优化方法在避免大增长率方面做得更好。

研究得出: (1)随机优化(RO)在其他两种策略的优化时间质量不确定性较大的情况下表现良好,导致处理空间 探索 过程中GPC值过高。(2)贝叶斯优化(BO)可靠,性能好,不需要超参数调优。然而,在早期和后期的循环中,BO受到GPC值过高的影响。(3) 专家系统优化 (ESO) 可靠且安全,但前驱体剂量次数过于保守。

一劳永逸 (Set it and forget it)

「所有这些算法都提供了一种更快地收敛到最佳组合的方法,你不必像今天通常那样花时间将样品放入反应器中、取出样品、进行测量等。相反,你拥有实时与反应堆连接的回路。」该研究的合著者、Argonne 首席材料科学家 Angel Yanguas-Gil 说。

这种设置还通过形成一个闭环系统使两种 AI 方法的过程自动化。

尽管存在一些弱点,但人工智能方法有效地确定了不同模拟 ALD 工艺的最佳剂量和清洗时间。 这使得这项研究成为第一批表明使用 AI 可以实时优化薄膜的研究。

研究人员表示: 在未来的工作中,除了改进现有的算法外,还希望将这些方法扩展到包括反应堆温度和前驱体分压。

「这是令人兴奋的,因为它开辟了使用这些类型的方法来快速优化实际 ALD 工艺的可能性,这一步骤可能会在未来开发新应用时为制造商节省宝贵的时间和金钱。」Jeff Elam 总结道。

您好,您问的是关于光伏如何转半导体的问题。光伏转半导体是一种将太阳能转换成电能的技术,它使用太阳能来制造电子,并将其转换成电能。这种技术可以有效地提高太阳能的利用率,并且可以更有效地利用太阳能。

光伏转半导体的基本原理是,太阳能被捕获并转换成电能,这是通过一种叫做光伏效应的物理现象实现的。当太阳光照射到一块特殊的半导体材料上时,就会产生电子和空穴,这些电子和空穴就会形成电流,这就是光伏效应。

光伏转半导体的过程包括三个步骤:收集太阳能、转换太阳能和输出电能。首先,太阳能被收集到一块特殊的半导体材料上,然后,太阳能被转换成电能,最后,电能被输出到电路中。

光伏转半导体技术可以有效地提高太阳能的利用率,并且可以更有效地利用太阳能。这种技术可以用来生产可再生能源,并且可以减少对传统能源的依赖,从而减少环境污染。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7623954.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-07
下一篇 2023-04-07

发表评论

登录后才能评论

评论列表(0条)

保存