②热处理目的:还原直拉单晶硅片真实电阻率;
1、热处理后电阻率会有什么变化
由于氧是在大约1400℃引入硅单晶的,所以在一般器件制造过程的温度范围(≤1200℃),以间隙态存在的氧是处于过饱和状态的,这些氧杂质在器件工艺的热循环过程中由于固溶度的降低会产生氧沉淀。一般而言,氧浓度越高,氧沉淀越易成核生长,形成的氧沉淀也就越多。反之,氧沉淀就越少。尤其是当氧浓度小于一定值时(<5×1017个/厘米3),几乎就观察不到氧沉淀的形成。
2、热处理的几个温度区间概念:
热施主:350-550℃,代表温度450℃.
450℃热处理后(或同等效果,如单晶在炉子里的冷却),可观察到N型样品的电阻率下降而P型样品的电阻率增高,有如引入一定数量的施主现象一样。这是由于在此温度下,溶解的氧原子迅速形成络合物(SiO4)所引起的热生施主,其电阻率与硅中氧含量的四次方成反比。
新施主:550-800℃,代表温度650℃.
650℃热处理,在迅速冷却的条件下(即迅速跨过450℃),可消除热生施主。即我们可观察到N型样品电阻率恢复高;P型样品电阻率恢复低。
沉淀:800-1200℃,代表温度1050℃
1050℃热处理,会带来氧沉淀,且因沉淀诱生层错等缺陷。
还原:>1200℃
>1200℃热处理,氧恢复到间隙态。
因为硅的禁带宽度比锗的大,且在相同温度下,锗的本征激发强于硅,很容易就达到较高的本征载流子浓度,使器件失去性能。在通常情况下,要使硅激发的本征载流子浓度接近掺杂电离的载流子浓度,所需的温度就要高于同样情况下的锗。所以,硅半导体器件比锗半导体的器件工作温度高。
扩展资料:
半导体禁带宽度与温度和掺杂浓度等有关:半导体禁带宽度随温度能够发生变化,这是半导体器件及其电路的一个弱点(但在某些应用中这却是一个优点)。半导体的禁带宽度具有负的温度系数。例如,Si的禁带宽度外推到0K时是1.17eV,到室温时即下降到1.12eV。
禁带宽度对于半导体器件性能的影响是不言而喻的,它直接决定着器件的耐压和最高工作温度;对于BJT,当发射区因为高掺杂而出现禁带宽度变窄时,将会导致电流增益大大降低。
参考资料来源:百度百科-锗半导体
参考资料来源:百度百科-半导体禁带宽度
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)