元素周期表内容

元素周期表内容,第1张

元素周期表是元素周期律用表格表达的具体形式,它反映元素原子的内部结构和它们之间相互联系的规律。元素周期表简称周期表。元素周期表有很多种表达形式,目前最常用的是维尔纳长式周期表。元素周期表有7个周期,有16个族和4个区。元素在周期表中的位置能反映该元素的原子结构。周期表中同一横列元素构成一个周期。同周期元素原子的电子层数等于该周期的序数。同一纵行(第Ⅷ族包括3个纵行)的元素称“族”。族是原子内部外电子层构型的反映。例如外电子构型,IA族是ns1,IIIA族是ns2 np1,O族是ns2 np4, IIIB族是(n-1) d1·ns2等。元素周期表能形象地体现元素周期律。根据元素周期表可以推测各种元素的原子结构以及元素及其化合物性质的递变规律。当年,门捷列夫根据元素周期表中未知元素的周围元素和化合物的性质,经过综合推测,成功地预言未知元素及其化合物的性质。现在科学家利用元素周期表,指导寻找制取半导体、催化剂、化学农药、新型材料的元素及化合物。

现代化学的元素周期律是1869年俄国科学家德米特里·伊万诺维奇·门捷列夫(Dmitri Ivanovich Mendeleev )首先整理,他将当时已知的63种元素依原子量大小并以表的形式排列,把有相似化学性质的元素放在同一行,就是元素周期表的雏形。利用周期表,门得列夫成功的预测当时尚未发现的元素的特性(镓、钪、锗)。1913年英国科学家莫色勒利用阴极射线撞击金属产生X射线,发现原子序越大,X射线的频率就越高,因此他认为核的正电荷决定了元素的化学性质,并把元素依照核内正电荷(即质子数或原子序)排列,经过多年修订后才成为当代的周期表。

在周期表中,元素是以元素的原子序排列,最小的排行最先。表中一横行称为一个周期,一列称为一个族。

1 H氢1.0079

2 He氦4.0026

3 Li锂6.941

4 Be铍9.0122

5 B硼10.811

6 C碳12.011

7 N氮14.007

8 O氧15.999

9 F氟18.998

10 Ne氖20.17

11 Na钠22.9898

12 Mg镁24.305

13 Al铝26.982

14 Si硅28.085

15 P磷30.974

16 S硫32.06

17 Cl氯35.453

18 Ar氩39.94

19 K钾39.098

20 Ca钙40.08

21 Sc钪44.956

22 Ti钛47.9

23 V 钒50.94

24 Cr铬51.996

25 Mn锰54.938

26 Fe铁55.84

27 Co钴58.9332

28 Ni镍58.69

29 Cu铜63.54

30 Zn锌65.38

31 Ga镓69.72

32 Ge锗72.5

33 As砷74.922

34 Se硒78.9

35 Br溴79.904

36 Kr氪83.8

37 Rb铷85.467

38 Sr锶87.62

39 Y 钇88.906

40 Zr锆91.22

41 Nb铌92.9064

42 Mo钼95.94

43 Tc锝(99)

44 Ru钌161.0

45 Rh铑102.906

46 Pd钯106.42

47 Ag银107.868

48 Cd镉112.41

49 In铟114.82

50 Sn锡118.6

51 Sb锑121.7

52 Te碲127.6

53 I碘126.905

54 Xe氙131.3

55 Cs铯132.905

56 Ba钡137.33

57-71La-Lu镧系

57 La镧138.9

58 Ce铈140.1

59 Pr镨140.9

60 Nd钕144.2

61 Pm钷(147)

62 Sm钐150.3

63 Eu铕151.96

64 Gd钆157.25

65 Tb铽158.9

66 Dy镝162.5

67 Ho钬164.9

68 Er铒167.2

69 Tm铥168.9

70 Yb镱173.04

71 Lu镥174.967

72 Hf铪178.4

73 Ta钽180.947

74 W钨183.8

75 Re铼186.207

76 Os锇190.2

77 Ir铱192.2

78 Pt铂195.08

79 Au金196.967

80 Hg汞200.5

81 Tl铊204.3

82 Pb铅207.2

83 Bi铋208.98

84 Po钋(209)

85 At砹(201)

86 Rn氡(222)

87 Fr钫(223)

88 Ra镭226.03

89-103Ac-Lr锕系

89 Ac锕(227)

90 Th钍232.0

91 Pa镤231.0

92 U铀238.0

93 Np镎(237)

94 Pu钚(239,244)

95 Am镅(243)

96 Cm锔(247)

97 Bk锫(247)

98 Cf锎(251)

99 Es锿(252)

100 Fm镄(257)

101 Md钔(258)

102 No锘(259)

103 Lr铹(260)

104 Rf钅卢(257)

105 Db钅杜(261)

106 Sg钅喜(262)

107 Bh钅波(263)

108 Hs钅黑(262)

109 Mt钅麦(265)

110 Ds钅达(266)

111 Rg钅仑(272)

112 Uub(285)

113 Uut(284)

114 Uuq(289)

115 Uup(289)

116 Uuh(292)

117 Uus(*) /*尚未被发现*/

118 Uuo(293)

……

门捷列夫出生于1834年,他出生不久,父亲就因双目失明出外就医,失去了得以维持家人生活的教员职位。门捷列夫14岁那年,父亲逝世,接着火灾又吞没了他家中的所有财产,真是祸不单行。1850年,家境困顿的门捷列夫藉着微薄的助学金开始了他的大学生活,后来成了彼得堡大学的教授。

幸运的是,门捷列夫生活在化学界探索元素规律的卓绝时期。当时,各国化学家都在探索已知的几十种元素的内在联系规律。

1865年,英国化学家纽兰兹把当时已知的元素按原子量大小的顺序进行排列,发现无论从哪一个元素算起,每到第八个元素就和第一个元素的性质相近。这很像音乐上的八度音循环,因此,他干脆把元素的这种周期性叫做“八音律”,并据此画出了标示元素关系的“八音律”表。

显然,纽兰兹已经下意识地摸到了“真理女神”的裙角,差点就揭示元素周期律了。不过,条件限制了他作进一步的探索,因为当时原子量的测定值有错误,而且他也没有考虑到还有尚未发现的元素,只是机械地按当时的原子量大小将元素排列起来,所以他没能揭示出元素之间的内在规律。

可见,任何科学真理的发现,都不会是一帆风顺的,都会受到阻力,有些阻力甚至是人为的。当年,纽兰兹的“八音律”在英国化学学会上受到了嘲弄,主持人以不无讥讽的口吻问道:“你为什么不按元素的字母顺序排列?”

门捷列夫顾不了这么多,他以惊人的洞察力投入了艰苦的探索。直到1869年,他将当时已知的仍种元素的主要性质和原子量,写在一张张小卡片上,进行反复排列比较,才最后发现了元素周期规律,并依此制定了元素周期表。

先背熟元素周期表,然后就会慢慢找出各族元素的规律,以后见到没有学过的元素只要是同一族的都会知道有什么特点,有什么化学性质,那就不是可以举一反三了

横着看叫周期,是指元素周期表上某一横列元素最外层电子从1到8的一个周期循环

竖着看叫族,是指某一竖列元素因最外层电子数相同而表现出的相似的化学性质

主族元素是只有最外层电子没有排满的,但是副族有能级的跃迁,次外层电子也没排满。

这张表揭示了物质世界的秘密,把一些看来似乎互不相关的元素统一起来,组成了一个完整的自然体系。它的发现,是近代化学史上的一个创举,对于促进化学的发展,起了巨大的作用。看到这张表,人们便会想到它的最早发明者——门捷列夫。

德米特里·伊万诺维奇·门捷列夫生于一八三四年二月七日俄国西伯利亚的托波尔斯克市。这个时代,正是欧洲资本主义迅速发展时期。生产的飞速发展,不断地对科学技术提出新的要求。化学也同其它科学一样,取得了惊人的进展。门捷列夫正是在这样一个时代,诞生到人间。门捷列夫从小就热爱劳动,热爱学习。他认为只有劳动,才能使人们得到快乐、美满的生活;只有学习,才能使人变得聪明。

门捷列夫在学校读书的时候,一位很有名的化学教师,经常给他们讲课。热情地向他们介绍当时由英国科学家道尔顿始创的新原子论。由于道尔顿新原于学说的问世,促进了化学的发展速度,新元素被发现了。化学这一门科学正激动着人们的心。这位教师的讲授,使门捷列夫的思想更加开阔了,决心为化学这门科学献出一生。

门捷列夫在大学学习期间,表现出了坚韧、忘我的超人精神。疾病折磨着门捷列夫,由于丧失了无数血液,他一天一天的消瘦和苍白了。可是,在他贫血的手里总是握着一本化学教科书。那里面当时有很多没有弄明白的问题,缠绕着他的头脑,似乎在召呼他快去探索。他在用生命的代价,在科学的道路上攀登着。他说,我这样做“不是为了自己的光荣,而是为了俄国名字的光荣。”——过了一段时间以后,门捷列夫并没有死去,反而一天天好起来了。最后,才知道是医生诊断的错误,而他得的不过是气管出血症罢了。

由于门捷列夫学习刻苦和在学习期间进行了一些创造性的研究工作,一八五五年,他以优异成绩从学院毕业。毕业后,他先后到过辛菲罗波尔、敖德萨担任中学教师。这期间,他一边教书,一边在极其简陋的条件下进行研究,写出了《论比容》的论文。文中指出了根据比容进行化合物的自然分组的途径。一八五七年一月,他被批准为彼得堡大学化学教研室副教授,当时年仅二十三岁。

攀登科学高峰的路,是一条艰苦而又曲折的路。门捷列夫在这条路上,也是吃尽了苦头。当他担任化学副教授以后,负责讲授《化学基础》课。在理论化学里应该指出自然界到底有多少元素?元素之间有什么异同和存在什么内部联系?新的元素应该怎样去发现?这些问题,当时的化学界正处在探索阶段。近五十多年来,各国的化学家们,为了打开这秘密的大门,进行了顽强的努力。虽然有些化学家如德贝莱纳和纽兰兹在一定深度和不同角度客观地叙述了元素间的某些联系,但由于他们没有把所有元素作为整体来概括,所以没有找到元素的正确分类原则。年轻的学者门捷列夫也毫无畏惧地冲进了这个领域,开始了艰难的探索工作。

他不分昼夜地研究着,探求元素的化学特性和它们的一般的原子特性,然后将每个元素记在一张小纸卡上。他企图在元素全部的复杂的特性里,捕捉元素的共同性。一但他的研究,一次又一次地失败了。可他不屈服,不灰心,坚持干下去。

为了彻底解决这个问题,他又走出实验室,开始出外考察和整理收集资料。一八五九年,他去德国海德尔堡进行科学深造。两年中,他集中精力研究了物理学、化学,使他探索元素间内在联系的基础更扎实了。 一八六二年,他对巴库油田进行了考察,对液体进行了深入研究,重测了一些元素的原子量,使他对元素的特性有了深刻的了解。一八六七年,他借应邀参加在法国举行的世界工业展览俄罗斯陈列馆工作的机会,参观和考察了法国、德国、比利时的许多化工厂、实验室,大开眼界,丰富了知识。这些实践活动,不仅增长了他认识自然的才干,而且对他发现元素周期律,奠定了雄厚的基础。

门捷列夫又返回实验室,继续研究他的纸卡。他把重新测定过的原子量的元素,按照原子量的大小依次排列起来。他发现性质相似的元素,它们的原子量并不相近;相反,有些性质不同的元素,它们的原子量反而相近。他紧紧抓住元素的原子量与性质之间的相互关系,不停地研究着。他的脑子因过度紧张,而经常昏眩。但是,他的心血并没有白费,在一八六九年二月十九日,他终于发现了原素周期律。他的周期律说明:简单物体的性质,以及元素化合物的形式和性质,都和元素原子量的大小有周期性的依赖关系。门捷列夫在排列元素表的过程中,又大胆指出,当时一些公认的原子量不准确。如那时金的原子量公认为169.2,按此在元素表中,金应排在锇、铱、铂的前面,因为它们被公认的原子量分别为198.6、6.7、196.7,而门捷列夫坚定地认为金应排列在这三种元素的后面,原子量都应重新测定。大家重测的结果,锇为190.9、铱为193.1、铂为195.2,而金是197.2。实践证实了门捷列夫的论断,也证明了周期律的正确性。

在门捷列夫编制的周期表中,还留有很多空格,这些空格应由尚未发现的元素来填满。门捷列夫从理论上计算出这些尚未发现的元素的最重要性质,断定它们介于邻近元素的性质之间。例如,在锌与砷之间的两个空格中,他预言这两个未知元素的性质分别为类铝和类硅。就在他预言后的四年,法国化学家布阿勃朗用光谱分析法,从门锌矿中发现了镓。实验证明,镓的性质非常象铝,也就是门捷列夫预言的类铝。镓的发现,具有重大的意义,它充分说明元素周期律是自然界的一条客观规律;为以后元素的研究,新元素的探索,新物资、新材料的寻找,提供了一个可遵循的规律。

门捷列夫发现了元素周期律,在世界上留下了不朽的光荣,人们给他以很高的评价。恩格斯在《自然辩证法》一书中曾经指出。“门捷列夫不自觉地应用黑格尔的量转化为质的规律,完成了科学上的一个勋业,这个勋业可以和勒维烈计算尚未知道的行星海王星的轨道的勋业居于同等地位。”

由于时代的局限性,门捷列夫的元素周期律并不是完整无缺的。一八九四年,惰性气体氛的发现,对周期律是一次考验和补充。一九一三年,英国物理学家莫塞莱在研究各种元素的伦琴射线波长与原子序数的关系后,证实原子序数在数量上等于原子核所带的阳电荷,进而明确作为周期律的基础不是原子量而是原子序数。在周期律指导下产生的原于结构学说,不仅赋予元素周期律以新的说明,并且进一步阐明了周期律的本质,把周期律这一自然法则放在更严格更科学的基础上。元素周期律经过后人的不断完善和发展,在人们认识自然,改造自然,征服自然的斗争中,发挥着越来越大的作用。

门捷列夫除了完成周期律这个勋业外,还研究过气体定律、气象学、石油工业、农业化学、无烟火药、度量衡等。由于他总是日以继夜地顽强地劳动着,在他研究过的这些领域中,都在不同程度上取得了成就。

1907年2月2日,这位享有世界盛誉的科学家,因心肌梗塞与世长辞了。

元素周期律的发现是许多科学家共同努力的结果。

1789年,安托万-洛朗·拉瓦锡出版的《化学大纲》中发表了人类历史上第一张《元素表》,在该表中,他将当时已知的33种元素分四类。

1829年,德贝莱纳在对当时已知的54种元素进行了系统的分析研究之后,提出了元素的三元素组规则。他发现了几组元素,每组都有三个化学性质相似的成员。并且,在每组中,居中的元素的原子量,近似于两端元素原子量的平均值。

1850年,德国人培顿科弗宣布,性质相似的元素并不一定只有三个;性质相似的元素的原子量之差往往为8或8的倍数。

1862年,法国化学家尚古多创建了《螺旋图》,他创造性地将当时的62种元素,按各元素原子量的大小为序,标志着绕着圆柱一升的螺旋线上。他意外地发现,化学性质相似的元素,都出现在同一条母线上。

1863年,英国化学家欧德林发表了《原子量和元素符号表》,共列出49个元素,并留有9个空位。

上述各位科学家以及他们所做的研究,在一定程度上只能说是一个前期的准备,但是这些准备工作是不可缺少的。而俄国化学家门捷列夫、德国化学家迈尔和英国化学家纽兰兹在元素周期律的发现过程中起了决定性的作用。

1865年,纽兰兹正在独立地进行化学元素的分类研究,在研究中他发现了一个很有趣的现象。当元素按原子量递增的顺序排列起来时,每隔8个元素,元素的物理性质和化学性质就会重复出现。由此他将各种元素按着原子量递增的顺序排列起来,形成了若干族系的周期。纽兰兹称这一规律为“八音律”。这一正确的规律的发现非但没有被当时的科学界接受,反而使它的发现者纽兰兹受尽了非难和侮辱。直到后来,当人人已信服了门氏元素周期之后才警醒了,英国皇家学会对以往对纽兰兹不公正的态度进行了纠正。门捷列夫在元素周期的发现中可谓是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老师在内的各个方面的不理解和压力。

门捷列夫生于1834年,10岁之前居住于西伯利亚,在一个政治流放者的指导下,学习科学知识并对其产生了极大兴趣。

1847年,失去父亲的门捷列夫随母亲来到披得堡。1850年,进入中央师范学院学习,毕业后曾担任中学教师,后任彼得堡大学副教授。

1867年,担任教授的门捷列夫为了系统地讲好无机化学课程中,正在着手著述一本普通化学教科书《化学原理》。在著书过程中,他遇到一个难题,即用一种怎样的合乎逻辑的方式来组织当时已知的63种元素。

门捷列夫仔细研究了63种元素的物理性质和化学性质,又经过几次并不满意的开头之后,他想到了一个很好的方法对元素进行系统的分类。门捷列夫准备了许多类似扑克牌一样的卡片,将63种化学元素的名称及其原子量、氧化物、物理性质、化学性质等分别写在卡片上。门捷列夫用不同的方法去摆那些卡片,用以进行元素分类的试验。最初,他试图像德贝莱纳那样,将元素分分为三个一组,得到的结果并不理想。他又将非金属元素和金属元素分别摆在一起,使其分成两行,仍然未能成功。他用各种方法摆弄这些卡片,都未能实现最佳的分类。

1869年3月1日这一天,门捷列夫仍然在对着这些卡片苦苦思索。他先把常见的元素族按照原子量递增的顺序拼在一起,之后是那些不常见的元素,最后只剩下稀土元素没有全部“入座”,门捷列夫无奈地将它放在边上。从头至尾看一遍排出的“牌阵”,门捷列夫惊喜地发现,所有的已知元素都已按原子量递增的顺序排列起来,并且相似元素依一定的间隔出现。

第二天,门捷列夫将所得出的结果制成一张表,这是人类历史上第一张化学元素周期表。在这个表中,周期是横行,族是纵行。在门捷列夫的周期表中,他大胆地为尚待发现的元素留出了位置,并且在其关于周期表的发现的论文中指出:按着原子量由小到大的顺序排列各种元素,在原子量跳跃过大的地方会有新元素被发现,因此周期律可以预言尚待发现的元素。

事实上,德国化学家迈尔早在1864年就已发明了“六元素表”,此表已具备了化学元素周期表早几个月,迈尔又对“六元素表”进行了递减,提出了著名的《原子体积周期性图解》。该图解比门氏的第一张化学元素表定量化程度要强,因而比较精确。但是,迈尔未能对该图解进行系统说明,而该图解侧重于化学元素物理性质的体现。

1871年12月,门捷列夫在第一张元素周期表的基础上进行增益,发表了第二张表。在该表中,改竖排为横排,使用一族元素处于同一竖行中,更突出了元素性质的周期性。至此,化学元素周期律的发现工作已圆满完成。

客观上来说,迈尔和门捷列夫都曾独自发现了元素的周期律,但是由于门捷列夫对元素周期律的研究最为彻底,故而在化学界通常将周期律称为门捷列夫周期律。

主族元素越是向右非金属性越强,越是向上金属性越强。

同主族元素,随着周期数的增加,分子量越来越大,半径越来越大,金属性越来越强。

同周期元素,随着原子系数数的增加,分子量越来越大,半径越来越小,非金属性越来越强。

最后一列上都是稀有气体,化学性质稳定

中学化学就讲这些,过渡元素不要求。

1 元素周期表中元素及其化合物的递变性规律

1.1 原子半径

(1)除第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小;

(2)同一族的元素从上到下,随电子层数增多,原子半径增大。

1.2 元素化合价

(1)除第1周期外,同周期从左到右,元素最高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外);

(2)同一主族的元素的最高正价、负价均相同

1.3 单质的熔点

(1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减;

(2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增

1.4 元素的金属性与非金属性

(1)同一周期的元素从左到右金属性递减,非金属性递增;

(2)同一主族元素从上到下金属性递增,非金属性递减。

1.5 最高价氧化物和水化物的酸碱性

元素的金属性越强,其最高价氧化物的水化物的碱性越强;元素的非金属性越强,最高价氧化物的水化物的酸性越强。

1.6 非金属气态氢化物

元素非金属性越强,气态氢化物越稳定。同周期非金属元素的非金属性越强,其气态氢化物水溶液一般酸性越强;同主族非金属元素的非金属性越强,其气态氢化物水溶液的酸性越弱。

1.7 单质的氧化性、还原性

一般元素的金属性越强,其单质的还原性越强,其氧化物的氧离子氧化性越弱;元素的非金属性越强,其单质的氧化性越强,其简单阴离子的还原性越弱。

2. 推断元素位置的规律

判断元素在周期表中位置应牢记的规律:

(1)元素周期数等于核外电子层数;

(2)主族元素的序数等于最外层电子数。

半导体物理h是表示小时。

这个是定义的,有效质量等于h的平方除以d方e比上dk的平方,小时不是时间的国际单位制基本单位(时间的国际单位制基本单位是秒),而是与国际单位制基本单位相协调的辅助时间单位。

费米能级等于费米子系统在趋于绝对零度时的化学势;但是在半导体物理和电子学领域中,费米能级则经常被当做电子或空穴化学势的代名词。一般来说,“费米能级"这个术语所代表的含义可以从上下语境中判断。

简介

物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体。而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。

自己慢慢看嘛

严格意义上的超频是一个广义的概念,它是指任何提高计算机某一部件工作频率而使之工作在非标准频率下的行为及相关行动都应该称之为超频,其中包括CPU超频、主板超频、内存超频、显示卡超频和硬盘超频等等很多部分,而就大多数人的理解,他们的理解仅仅是提高CPU的工作频率而已,这可以算是狭义意义上的超频概念。英文中,超频是"OverClock",也被简写成OC,超频者就是"OverClocker",它翻译过来的意思是超越标准的时钟频率,因此国外的朋友们也认为让硬件产品以超越标准的频率工作便是超频了。而至于超频的起源目前已无法考证,谁是始作俑者更是无人知晓,其起源大概是从生活在386时代的前人开始尝试,至今超频的发展还是依然有迹可寻。

有人说超频是在钻CPU制造商设计和制造中的空子,也有人说这是为了榨干CPU的性能潜力,要解释这两种说法,这需要从CPU的制造方面开始说起。CPU是一种高科技的结晶,代表人类的最新科技实力,所以它的制造同样也需要最先进的技术来完成。正是由于CPU总是位于科技潮水的最前沿,所以即使以Intel的实力,依然无法做到对CPU生产过程的完全监控和掌握,就是说有很多不可控的因素夹杂在CPU制造其中。这就造成了一个比较严重的问题——无法完全确定一款CPU最合理的工作频率。简单的来说就是某生产线上制造出的CPU只能保证最终产品在一定频率范围之内运行,而不可能“恰好”定在某个需要的频率上。至于偏差情况有多严重,则要视具体生产工艺水平和制造CPU的晶圆片品质而定。因此生产线下来的CPU每一颗都要经过细致的测试以后,才能最终标定它的频率,这个标定出来的频率就是我们在CPU壳上看到的频率了,这个频率的高低完全由CPU生产商来定。

一般来说,CPU制造商都会为了保证产品质量而预留的一点频率余地,例如实际能达到2GHz的P4 CPU可能只标称成1.8GHz来销售,因此这一点CPU频率的保留空间便成了部分硬件发烧友们最初的超频的灵感来源,他们的目的就是为了把这失去的性能自己给讨回来,这便发展到了CPU的超频。

[b]如何超频[/b]

要说如何去超频就要先讲一下CPU频率设定的问题。CPU的工作时钟频率(主频)是由两部分:外频与倍频来决定的,两者的乘积就是主频。所谓外部频率,指的就是整体的系统总线频率,它并不等同于经常听到的前端总线(FrontSideBus)的频率,而是由外频唯一决定了前端总线的频率——前端总线是连接CPU和北桥芯片的总线。AMD系统前端总线频率是两倍的外率,而P4平台上是4倍的外率,只有在以前的老Athlon和PIII/PII平台上,前端总线频率才和外频相等。目前主流CPU的外频大多为100MHz、133MHz和166MHz,Intel基于200MHz外频(即FSB=800MHz)的P4才刚刚发布,而AMD公司800MHz前端总线的Athlon还没有发布。倍频的全称是倍频系数,CPU的时钟频率与外频之间存在着一个比值关系,这个比值就是倍频系数,是个简称倍频,倍频是以自然数为基础的数字,以0.5为间隔,例如11.5,12,13这类,现在最高的倍频能达到将近25。比如P4 2.8G CPU就是由133MHz的外频乘以21的倍频得到的。

超频从整体上来说,就是手动去设置CPU的外频和倍频,以使得CPU工作在更高的频率下,然而现在Intel的CPU倍频都是锁死的,而AMD AthlonXP也仅有很少数的产品是没有锁倍频的,因此现在的超频大多数都是从外频上面去做手脚,也就是提高外部总线的频率这个被乘数来使CPU的主频得以提高。

现在的主板厂商很多都作了人性化的超频功能,因此超频的方法也从以前的硬超频变成了现在更方便更简单的软超频。所谓硬超频是指通过主板上面的跳线或者DIP开关手动设置外频和CPU、内存等工作电压来实现的,而软超频指的是在系统的BIOS里面进行设置外频、倍频和各部分电压等参数,一些主板厂商还推出了傻瓜超频功能(例如硕泰克的红色风暴 RedStrom)就是主板可以自动以1MHz为单位逐步提高外频频率,自动为用户找到一个让CPU能够稳定运行的最高频率,这是一种傻瓜化自动化的超频。此外一些针对超频玩家而推出的主板还可能带有DEBUG指示灯为超频者在超频中提供指示与帮助,DEBUG指示灯[图DEBUG]就是板载在一块DEBUG卡,有两位7段数字的作为显示,计算机在启动过程中会自动顺序检测个部分硬件是否连接好并工作正常,如果哪一部分出现问题,就会在显示出该部分的代号,这样用户就可以很容易的按照手册找到出现问题的是哪个部分,便于超频者发现问题解决问题。如果最终没有问题,顺利启动通过,就会显示"FF"的字样,也指示一切正常。

[b]硬超频:

[/b]

现在采用纯跳线方式超频的主板已经没有了,代替它们的都是采用DIP开关这样的形式,而现在的CPU都是所频的,倍频设置都是主板自动侦测,因此一般倍频设置也被省略了。下面我们以磐英EPOX EP-4SDA+主板为例说明一下如何调节DIP开关来进行硬超频。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp1.jpg

如图所示,在这款P4主板上可以看到四个印刷表格,仔细看一下,他们分别代表的是:SW1--AGP电压调节(AGP 4X);SW2--DDR内存电压(VCC2.5);SW3--CPU核心电压(CPU V-Core);SW4--CPU增加电压量(CPU VOLTAGE),此外还有JCLK1这个跳线,可以设定外频是100MHz、133MHz还是自动。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp2.jpg

如果我们现在用一块P4 2.0GA CPU进行超频测试,它的规范频率设置应该是100MHz x 20=2000MHz,如果采用硬超频,就需要把外频从标准的100MHz提升到133MHz,而至于CPU是不是能以133外频工作(2.66GHz),那就是另一回事情了。从说明上[JP1-1.JPG]可以看到,默认的位置是3-4连接,也就是自动侦测CPU外频,我们需要把1-2短接,强制将外频设定在133MHz下!

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp3.jpg

改后如图所示,需要注意的是有三角标示的那一端为第一针,顺序不要搞混。

此外为了提高整体的稳定性,也是为了做示范,我们打算把CPU的核心电压和内存电压也都提高一些,而SW1的AGP电压就不改变了,因此我们还需要调节SW2、SW3和SW4这三个DIP开关。首先调节SW2的内存电压,DDR默认电压为2.5V,我们可以适当的提高到2.6V,如表格所示,

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp4.jpg

需要将默认状态的OFF-OFF-OFF改变成OFF-OFF-ON,修改后的SW2如图。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp5.jpg

P4 CPU的标准电压为1.5V,我们打算将超频后的电压设定在1.65V,CPU实际的工作电压==BIOS设置+SW4的设置电压(SW3设为AUTO)==SW3设置电压+SW4的设置电压(BIOS设置为DEFAULT)。现在BIOS设置为默认电压,那么需要调整SW3和SW4的设置。SW3默认设置都是OFF,我们打算将电压设置为1.55V,按照主板上所示,我们需要把1四个开关都置于ON的状态下,调整好了以后如图

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp6.jpg

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp7.jpg

另外的SW4-CPU增加电压量上我们也要设置成+0.1V,因此根据图中所示,

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp8.jpg

我们还需要把SW4的第一个开关放在ON的位置上,调整前后的SW4如图。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp9.jpg

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp10.jpg

硬超频部分的工作就这么多了,下面你要做的工作就是检查一下硬件各部分的连接,准备尝试开机了。

[b]2.软超频:

[/b]

软超频就是开机以后进入系统的BIOS中,进行超频设置的过程。进入BIOS的方法是开机以后按下DEL键或是F1键就直接进入主板的BIOS中了,不同BIOS版本的主板进入方式会有一些不同之处,

Award BIOS,进入方式为按下DEL键;而Phoenix BIOS大多是要按下F1键来进入。不同BIOS版本,不同的平台中软超频的设置方式也存在一些差异,在此我们以Award BIOS、AMI BIOS和Phoenix BIOS三种最常见的BIOS版本为例,平台则是两个P4平台,一个XP平台,介绍的内容包括手动的软性设置与红色风暴这种自动超频方法。

Award BIOS(SiS645芯片组--P4平台)

我们打算软超频CPU还是这块P4 2.0GA,开机会按下DEL键进入BIOS主菜单,BIOS主菜单画面如图

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp11.jpg

进行软超频的设置在右边一栏的第一行"Frequency/Voltage Control",我们进入这个菜单中,进入后的主画面如图。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp12.jpg

首先我们先来调整CPU的外频,利用键盘上的"上下"按键使光标移动到"CPU Clock"上面,然后按一下回车键,就会出现如图的菜单,

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp13.jpg

手动输入想设置成的CPU外频数值,在此允许输入数值范围在100-200之间,可以以每1MHz的频率提高进行线性超频,最大限度的挖掘CPU的潜能。原则上来讲,第一次超频CPU因为不清楚CPU究竟可以在多高的外频下工作,因此设置外频的数值可以以三至五兆赫兹为台阶提高来慢慢试验,在此为了示范,直接将外频设置成了133MHz这个标准外频,设置了正确的外频数字以后再按回车键确定。

第二步再来设置一下内存总线的频率,这是在"CPU:DRAM Clock Ratio"中进行选择

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp14.jpg

这里面设置的是外频与内存总线频率的比值,可以选择"4:3""1:1"和"4:5"三个,如果你使用的是DDR333内存,那么它的标准运行频率可以达到166MHz,刚才我们已经把外频设置成了133MHz,因此在此可以选择"4:5",让内存也运行在最高的水平,如果你使用的是DDR266内存,可以设置成"1:1"让二者同步工作,也可以还设置成"4:5",然后再加一些内存电压,尝试一下超频内存。

第三个步骤是调节CPU的核心电压,如果要想让CPU在一个高频率下工作,通常都需要适当的加一点儿电压来保证CPU的稳定运行。这在"Current Voltage"项目里面设置,如图:

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp15.jpg

P4 CPU的额定核心工作电压为1.5V,通常不超过1.65V的电压都是安全的,当然超频提高电压是要在保证稳定工作的前提下,尽可能的少加电压,这是从散热方面考虑为了将CPU的温度尽可能的控制在低水平下。电压也可以一点一点儿的逐渐尝试提高,不必急于一步到位,在此我们先选择1.55V尝试一下。请注意超过1.70V的电压对于北木核心的P4来说都是危险的,有可能会烧坏CPU,因此电压不宜加的过高!

第三步不是必须的,就是来提高给DDR内存供电的电压,DIMM模组的默认电压为2.5V,如果内存品质不好,或是也超频了内存,那么可以适当提高一点内存电压,加压幅度尽量不要超过0.5V,后则有可能会损坏内存。由于我们在此用的是DDR333内存,完全可以在166MHz下正常运行,因此只是示意性的选择了增加0.1v,如图所示。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp16.jpg

最后,在这里面还可以看到给AGP显示卡提高工作电压的选项,如果你超频是为标准外频,也让显示卡超频工作了的话,那么可以考虑适当提高一些AGP的电压,AGP默认电压为1.5V,在此我们也示意性的提高了0.1V,最后用户最好再来检查一下设置有没有错误。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp17.jpg

如果无误的话,那么就可以按ESC键,退出这个菜单了。最后存入CMOS设置再退出,重新启动。

如果超频不成功或是机器重新启动后没有点亮,那么需要关闭计算机,利用主板上的CMOS跳线清除CMOS信息,再开机重新设置;另一种方法是关闭计算机后,一直按住键盘上的Insert按键开机,直到点亮了以后再松开,这两种方法都可以让超频失败的计算机重新点亮。

[b]AMI BIOS(Intel 845PE芯片组--P4平台)[/b]

上面我们已经介绍了P4 CPU的软超频方法,这部分来介绍一种傻瓜化的自动超频技术——红色风暴。这种技术是某主板厂商开发的一种自动超频功能,使用它以后,主板会以1MHz为增加量,自动逐步提高外频来侦测CPU最高的稳定运行频率,而让用户免去了反复尝试外频,反复重新启动、清除CMOS等烦恼,因此说这是一种傻瓜化的超频技术,有些相似于照相中的傻瓜相机和普通手动相机之间的差异。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cn18.jpg

进入这个主板的BIOS以后,可以从上图看到这是采用AMI BIOS的主板,三个厂商的BIOS版本中的基本内容都是差不多的,只是它们之间存在一些微小的差别,这并不妨碍我们在BIOS中进行软超频的工作。不过并不是所有主板都提供了软超频方面的功能,目前主板厂商里面,EPOX、Abit、Asus、Soltek、双捷Albatron等厂商的主板产品在这方面做得不错。下面让我们来看一下这个Red Strom红色风暴技术。

在上图的BIOS主页面上,从左边一栏最下面的"Frequency/Voltage Control"中进入主板的超频选项里面,进入后的页面如图[Redstrom-1.jpg]。在"CPU Ratio Selection"里面显示的是CPU是锁频的,因此倍频不能被更改。而主板在"CPU Linear Frequency"里面也提供了手动调节CPU外频的功能,在CPU Linear Frequency改为Enable以后,就可以手动更改CPU的外频了,如图:

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp19.jpg

也可以以1MHz为增加量,手动调节线性提高外频。

在最上面可以看到有"Redstrom Overclocking Tech",这就是要介绍的红色风暴超频技术,进入以后就会看到如图

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp20.jpg

上图提示的,说明你已经进入红色风暴超频项目中,按下回车键便开始红色风暴的自动超频。按下Enter键以后,接下来系统自动会1MHz、1MHz的缓慢提高外频,大约每一秒钟提高1MHz,直至红色风暴所认为CPU能承受的最高工作频率为止,这块P4 2GA CPU利用红色风暴在不加电压的前提下超频,外频能逐步达到120MHz最终停止,在终止频率下系统会暂停5秒钟左右,接下来系统就会自动重新启动。

超频爱好者们大多还是喜欢手动调节外频来寻找CPU的最佳超频极限,而红色风暴可以作为一种参考依据来用。这款主板没有提供CPU电压调节功能,因此在这块主板上测试的CPU超频极限势必没有在提高电压后超频来的高,因此红色风暴也有优点有缺点,在此为大家介绍一下仅供参考。

[b]Phoenix BIOS(nForce2芯片组--Athlon XP平台)[/b]

在介绍过了两个Intel CPU平台的超频以后,我们来看一下AMD Athlon XP处理器的超频情况,我们选择的主板是颇具超频功能的nForce2芯片组的EPOX主板,它的BIOS版本为Phoenix公司的,也是为了让大家全面了解一下各个不同版本BIOS之间的异同之处。CPU采用的是最新的Barton核心的XP 3000+处理器,内存依然为Kingston DDR333内存。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp21.jpg

如图所示,这是Phoenix BIOS的主页面,虽然在里面看不到"Frequency/Voltage Control"的项目,但是频率调节和超频功能依然有,它们被分散在了其他的几个项目之中。首先进入"Power BIOS Features"项目中。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp22.jpg

在这里面有三个选项,分别是调节CPU、AGP和内存模组电压的。XP3000+的默认电压是1.65V,工作在13x倍频下,默认的前端总线频率(FSB)为166MHz,它的实际工作频率是2,158MHz==13 x 166。我们打算尝试一下200MHz的前端总线频率,把它设置在11 x 200==2.2GHz这样的频率下工作,电压也稍微提高一些,同时打算让DDR333内存运行在200MHz的频率下,等同于DDR400。在此我们先提高0.1V的CPU核心电压,这样XP就工作在了1.75V。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp23.jpg

因为也超频了内存,因此也需要适当的提高一些内存电压,在此将DIMM电压提高到2.77V,增加量0.27V,如图。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp24.jpg

在此不增加AGP电压了,这些设置好以后可以按ESC退出这个选项。接着退回到主界面以后,进入"Advanced Chipset Features"项目。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp25.jpg

如图,这是 Advanced Chipset Features项目的默认设置,在里面我们可以改变CPU的外频、倍频和内存的运行频率。首先先要改变一下"System Performance"项目,将它改变为"Expert"专家模式,全手动设置状态。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp26.jpg

接着和我们前面说到的一样,在"CPU Clock Ratio"中改变CPU倍频,在"FSB Frequency"中改变外频频率,新倍频设置为11,新外频设置为200MHz,改变如图。

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cn27.jpg

在"Memory Frequency"里面设置的是一个百分数,这个数值其实是内存运行频率和外频的比值,因为设置后的外频已经达到了200MHz,因此内存频率和它同步就已经达到DDR400的工作频率了,所以设置为100%就可以了,如果错误的设置为"200%",那么内存实际工作频率就达到了400MHz,这相当于DDR800内存了,多么可怕的频率啊!"Memory Timings"里面可以进一步详细设置内存的各种数值参数,在CPU的部分就不过多介绍了。设置完成以后检查一下是否有错误,

[img]http://www.gd21ec.com/xxkk/wlzx/yjimage/cp27.jpg

确认无误后ESC键退出该菜单,最后存储CMOS设置信息,退出BIOS重新启动就可以了。

[b]超频的影响与危害[/b]

不同频率的CPU都是以一定的额定功率工作的,因此正常的工作下就势必会产生热量,然而为了便于理解,在CPU发热方面大家甚至可以把它想象成一个电热丝,而对体积很小的CPU来说,如果散热不好,在局部的热量积累就很可能产生很高的温度,从而对CPU造成危害。这里需要说明的是,一定温度内的高热并不会直接损坏CPU,而是因高热所导致的“电子迁移现象”会破坏了CPU内部的芯片组织体系;而过高的电压却有可能将一些PN结和逻辑门电路击穿造成CPU永久性的损坏。理论上说“电子迁移现象”是绝对的过程,然而它发展速度的快慢就是程度的问题了,如果能保证CPU内部的核心温度低于80℃,这样就不会减缓电子迁移这一物理现象的发生。再快速的电子迁移过程也不会立即毁掉你的CPU,而是一个“慢性”的过程,这个过程的最终结果就是缩短CPU的寿命。

什么是电子迁移现象呢?“电子迁移”是50年代在微电子科学领域发现的一种从属现象,指因电子的流动所导致的金属原子移动的现象。因为此时流动的“物体”已经包括了金属原子,所以也有人称之为“金属迁移”。在电流密度很高的导体上,电子的流动会产生不小的动量,这种动量作用在金属原子上时,就可能使一些金属原子脱离金属表面到处流窜,结果就会导致原本光滑的金属导线的表面变得凹凸不平,造成永久性的损害。这种损害是个逐渐积累的过程,当这种“凹凸不平”多到一定程度的时候,就会造成CPU内部导线的断路与短路,而最终使得CPU报废。温度越高,电子流动所产生的作用就越大,其彻底破坏CPU内一条通路的时间就越少,即CPU的寿命也就越短,这也就是高温会缩短CPU寿命的本质原因。

此外伴随着超频的还会带来一些不稳定因素,这要从几方面来说。一方面是CPU的散热,超频后的CPU功率要比标准频率下大,因此伴随的发热量也要比标准频率大,如果多散发出来的热量不能及时有效的传递走,那么势必会造成CPU温度的升高,比如超频前CPU工作在38度,而超频后的CPU却有可能工作在48度。CPU长时间在高温下工作,稳定性方面的就会大折扣,也就是CPU在五六十度这种高温度下工作时的出错几率要远高于在三四十度下的工作出错几率。

另一方面,超频者往往不能将外频保证工作在100MHz、133MHz或是166MHz这种标准频率下,因为PC系统中除了系统总线以外,还有AGP显示卡的AGP总线频率,PCI总线频率、内存总线频率等其他和系统总线频率相关的总线速度,而这些频率有的是可以独立调节的,有的却要由系统总线的频率来决定。PCI和AGP的标准频率是33MHz和66MHz,比如在100MHz外频下,为了让PCI和AGP工作在标准的频率下,PCI对系统总线就是1/3分频,而AGP对系统总线就是2/3分频;而在133MHz外频下,它们的分频则可以分别设置成1/4和1/2,一样可以保证PCI和AGP总线分别运行在33MHz和66MHz的标准频率下。如果超频者将系统外频设置为120MHz,那么按照1/3和2/3分频的设置,PCI和AGP就分别运行在40MHz和60MHz下,随之,连接在PCI总线上的硬盘、声卡、网卡和SCSI卡等产品也就运行在了40MHz下,而连接在AGP总线上的显示卡就会运行在60MHz下,这与这些部件是不是能够超过他们的标准运行频率来稳定运行呢?这谁也没法保证,硬盘可能会出现读写错误、声卡可能没法正常发声、网卡和SCSI卡可能会出现无法使用的情况,而显示卡有可能会花屏或是致使系统死机,因此超频至非标准外频下势必会造成这种周边部件的不稳定性。如果超频者能将超频后的频率也达到100MHz、133MHz或是166MHz这种标准频率,那么周边部件就一样会以标准频率运行,因此就不会出现上面所说的这种不稳定性因素了,所以建议超频者能让超频后的PC依然运行在标准外频下以保证周边部件的稳定性和可靠性。

详解电脑超频的五大害处

超频后果一:CPU功耗增加

现在所有CPU的芯片都是由CMOS(互补型金属氧化物半导体)工艺制成。CMOS电路的动态功耗计算公式如下:

P=C×V2×f

C是电容负载,V是电源电压,f则是开关频率。

因为超频带来的CPU频率的增加,会造成动态功耗随频率成正比增长。而在超频的过程中,为了让CPU能够工作在更高频率上,常见的手段之一就是加电压。而这更加快了功耗增长的速度。

假设一块额定频率为1GHz、额定电压为1.5V的CPU其动态功耗为P0 。经过超频以后,工作电压加压到1.65V,稳定运行在 1.3GHz ,此时其动态功耗为P1。因为CPU制成以后,其电容值C也就基本固定,可以看作常量,也就是说超频前后的电容值C相等。

可以得到: P0 = 1.5 ×1.5×1 ×C = 2.25C (W)

P1 = 1.65×1.65×1.3×C = 3.54C (W)

两式相除得到: P1/P0 = 3.54C / 2.25C = 1.573

此式的意义是,这款超频后的CPU较未超频时,其动态功耗增加了57.3% ,因为对CMOS电路来说,静态功耗相对于动态功耗较小。因此其动态功耗的增长率近似为CPU总功耗的增长率。也就是说假设原来的CPU额定功率仅为60W,经加压超频后此时也将达到近95W ! 如果不更换更好的散热设备,将不可避免的引起CPU工作温度的上升。当处理器温度超过最大允许值,轻则无法正常工作,严重则导致CPU烧毁。

超频后果二:电迁徙

在前些年在提及超频后果的时候,经常会提起电迁徙(有人称为电子迁移)造成的危害。在半导体制造业中,最早的互连金属是铝,而且现在它也是硅片制造业中最普通的互连金属。然而铝有着众所周知的由电迁徙引起的可*性问题。

由于传输电流的电子将动量转移,会引起铝原子在导体中发生位移。在大电流密度的情况下,电子不断对铝原子进行冲击,造成铝原子逐渐移动而造成导体自身的不断损耗。在导体中,当过多的铝原子被冲击脱离原来的位置,在相应的位置就会产生坑洼和空洞。轻则造成某部分导线变细变薄而电阻增大,严重的会引起断路。而在导线的另一些部分则会产生铝原子堆积,形成一些小丘,如果堆积过多会造成导线于相邻导线之间发生连接,引起短路。不论集成电路内部断路还是短路,其后果都是灾难性的。电迁徙或许是集成电路中最广泛研究的失效机制问题之一。

超频的结果会使通过导线的电流增大,引起的功耗增加也会使芯片温度上升。而电流和温度的增加都会使芯片更容易产生电迁徙,从而对集成电路造成不可逆的损伤。因此长期过度超频可能会造成CPU的永久报废。

曾经有人这样反映:CPU超频到某个频率后,经过近一年的使用一直都很稳定。但是后来有一天就发现了CPU已经无法在这个频率上继续稳定工作。造成这种现象的原因,很可能是过度超频而散热措施不好,尽管CPU体质不错,在较高的温度下也能超到一个较高的频率。但是恶劣的工作环境和超负荷的工作让CPU内部发生严重的电迁徙。虽然没有造成短路或者断路,但是导线已经严重受到损伤,导线电阻R增大,最终引起布线延时RC(和布线电阻和布线电容有关)增加,导致时序错乱影响CPU正常工作。

一方面CPU集成的晶体管密度的不断提升,造成芯片中的导线密度不断增加,导线宽度和间距不断减小;另一方面CPU频率不断提升,功率逐渐加大而电压却在减小。CPU运作需要更细的导线去承载更大的电流,铝互连的应用日益受到挑战。因此更低电阻的铜互连将在集成电路的设计和制造中逐步取代原有的铝工艺。

很重要的一点是,铜具有良好的抗电迁徙的特性,几乎不需要考虑电迁徙问题。而目前市面上出售的CPU基本都已采用铜互连工艺。在AMD的Athlon(Thunderbird核心)和Intel的P4(NorthWood核心)发布以后的CPU都采用了铜互连技术,因此大多数人可以不必再为电迁徙而过于担心。

超频后果三:信号变差


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7628080.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-07
下一篇 2023-04-07

发表评论

登录后才能评论

评论列表(0条)

保存