扩散的目的:太阳能电池的基本就够就是一个PN结,而扩散就是为了形成PN结。
扩散的原理:太阳能电池一般选用的是P型掺杂的单晶硅片或者是多晶硅片,我们就需要通过扩散在上面形成一个N型的扩散层,从而形成PN结。现在一般采用的都是磷扩散。扩散源是三氯氧磷(pocl3),在900℃的高温下,它与硅片反应,生成二氧化硅和磷。具体的反应过程如下:
扩散(diffusion):物质分子从高浓度区域向低浓度区域转移直到均匀分布的现象。扩散的速率与物质的浓度梯度成正比。
气体分子热运动的速率很大,分子间极为频繁地互相碰撞,每个分子的运动轨迹都是无规则的杂乱折线。温度越高,分子运动就越激烈。在0℃时空气分子的平均速率约为400米/秒,但是,由于极为频繁的碰撞,分子速度的大小和方向时刻都在改变,气体分子沿一定方向迁移的速率就相当慢,所以气体分子的速率比气体分子运动的速率要慢得多。
固体分子间的作用力很大,绝大多数分子只能在各自的平衡位置附近振动,这是固体分子热运动的基本形式。但是,在一定温度下,固体里也总有一些分子的速度较大,具有足够的能量脱离平衡位置。这些分子不仅能从一处移到另一处,而且有的还能进入相邻物体,这就是固体发生扩散的原因。固体的扩散在金属的表面处理和半导体材料生产上很有用处,例如,钢件的表面渗碳法(提高钢件的硬度)、渗铝法(提高钢件的耐热性),都利用了扩散现象;在半导体工艺中利用扩散法渗入微量的杂质,以达到控制半导体性能的目的。
液体分子的热运动情况跟固体相似,其主要形式也是振动。但除振动外,还会发生移动,这使得液体有一定体积而无一定形状,具有流动必,同时,其扩散速度也大于固体。
将装有两种不同气体的两个容器连通,经过一段时间,两种气体就在这两个容器中混合均匀,这种现象叫做扩散。用密度不同的同种气体实验,扩散也会发生,其结果是整个容器中气体密度处处相同。在液体间和固体间也会发生扩散现象。例如清水中滴入几滴红墨水,过一段时间,水就都染上红色;又如把两块不同的金属紧压在一起,经过较长时间后,每块金属的接触面内部都可发现另一种金属的成份。
扩散是由于微粒(原子、分子等)的热运动而产生的质量迁移现象,主要是由于密度差引起的。在扩散过程中,气体分子从密度较大的区域移向密度较小的区域,经过一段时间的掺和,密度分布趋向均匀。在扩散过程中,迁移的分子不是单一方向的,只是密度大的区域向密度小的区城迁移的分子数,多于密度小的区域向密度大的区域迁移的分子数。
扩散现象是气体分子的内迁移现象。从微观上分析是大量气体分子做无规则热运动时,分子之间发生相互碰撞的结果。由于不同空间区域的分子密度分布不均匀,分子发生碰撞的情况也不同。这种碰撞迫使密度大的区域的分子向密度小的区域转移,最后达到均匀的密度分布。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)