一份智库报告透露的秘密:美国半导体产业的下一步措施……

一份智库报告透露的秘密:美国半导体产业的下一步措施……,第1张

工情报 Author 黄鑫

机工情报

装备制造业竞争力情报和贸易风险问题研究

2月18日,美国信息技术和创新基金会(ITIF)发布《摩尔定律被破坏:中国政策对全球半导体创新的影响》报告(以下简称“报告”)。报告概述了全球半导体行业 发展情况 ;分析了半导体行业 持续创新的动力和条件 ;探讨了 中国的半导体行业 政策及其影响。

紧接着,美国总统拜登签署 美国供应链行政令 (Executive Order on America’s Supply Chains),指示对 半导体、医疗用品、关键矿产及高容量电池 的供应链进行广泛评估。

由此可见,半导体行业对美国制造业、经济和国家安全的重要性不可言喻。

当前全球半导体行业的竞争格局

1. 美国企业销售额占全球近50%,但生产能力较弱

2019年,总部位于 美国的半导体企业 在全球半导体行业的 销售额中占据了47%的市场份额 (与2012年的51.8%相比下降了约5%),紧随其后的是韩国(19%)、日本和欧洲(各占10%)、中国台湾(6%)及中国大陆(5%)。

然而,截至2019年,美国仅占全球半导体制造市场的11%,而 韩国 该比例为28%,中国台湾为22% ,日本为16%,中国大陆为12%,欧洲为3%。 2015 2019年,中国大陆在全球半导体制造市场的占比几乎翻了一番 。直到2020年底,美国只有20家半导体制造厂(FAB)在运营。

2. 美、欧、韩在半导体行业的不同领域处于领先地位

逻辑芯片(logic chips)、存储器(memory chips)、模拟芯片(analog chips)和分立器件(discrete chips)是半导体行业的四大领域。从全球半导体行业每个主要细分领域的市场份额来看,2019年,美国在逻辑芯片和模拟芯片方面明显领先;韩国在存储器方面领先(美国紧随其后);欧洲在分立器件方面领先。总部位于 中国的企业在逻辑芯片市场的占有率为9% , 在分立器件市场的占有率为5%。

就具体企业而言,英特尔是全球逻辑芯片的领导者;截至2020年第一季度,德州仪器(Texas Instruments)、ADI和英飞凌(Infineon)是模拟芯片的领导者,其市场份额分别为19%、10%和7%;三星(Samsung)、SK海力士(SK Hynix)和美光(Micron)在动态随机存取存储器(DRAM)领域处于领先地位,分别占全球市场份额的44%、29%和21%。

3. 全球半导体产业链参与程度高,各国均有不同的价值优势

半导体行业高度全球化,大量国家/地区的企业在半导体生产的多个方面展开竞争,从半导体设计到制造,再到ATP(组装、测试和封装)。在半导体价值链(value chain)的每个环节上,平均有来自25个国家的企业参与直接供应链(direct supply chain),23个国家的企业参与支撑工作(support function)。超过12个国家拥有直接从事半导体芯片设计的企业,39个国家至少拥有1家半导体制造工厂,超过25个国家拥有从事ATP的企业。

半导体生产过程中的每个环节都创造了相当大的价值。据美国国际贸易委员会(ITC)的估计,半导体芯片90%的价值存在于设计和制造阶段,10%的价值来自ATP。

全球半导体行业的一个关键驱动力是专业化 ,因为企业——甚至国家内部的整个产业生态集群——都选择将精力集中在掌握半导体生产过程的关键环节上。例如,荷兰在极紫外(EUV)光刻方面的优势;日本在化学品和生产设备方面的优势;韩国在存储芯片方面的优势;中国台湾在代工厂上的优势;马来西亚和越南在ATP方面的优势。

4. 美国半导体专利申请全球领先

根据美国专利商标局(USPTO)追踪其授予的半导体专利数据可知,虽然美国在全球半导体专利中的份额从1998年的43%下降到2018年的29%,但仍然领先;日本的份额下降了大约1/3,从33%下降到23%;随后是中国台湾和韩国;欧盟排在第五位;中国大陆排名第六,约占全球专利的6%。如果 计算每10亿美元GDP中的专利数,中国的滞后就更为严重 。每10亿美元的GDP中,有310项专利授予美国半导体企业,仅有 77项专利授予中国半导体企业 。

5. 中国占全球半导体行业增加值的份额不断攀升

就全球半导体行业增加值的份额而言, 2001 2016年,中国大陆的增长率几乎增长了四倍,从8%增长到31% ;美国的份额从28%下降到22%;日本的份额下降了2/3以上,从30%下降到8%;中国台湾的份额从8%增长到15%;韩国的份额从5%增长到10%;德国和马来西亚各占2%的份额。

6. 除日本和美国外,全球主要国家(地区)半导体行业出口均有所增长

2005 2019年,中国大陆半导体行业出口从278亿美元增长到1380亿美元;中国台湾从359亿美元增长到1110亿美元;韩国从309亿美元增长到924亿美元;欧盟27国+英国从694亿美元增长到816亿美元。与此同时,美国的出口大致保持不变,2005年为531亿美元,2019年为529亿美元;日本的出口略有下降,从479亿美元降至469亿美元。

7. 半导体是全球研发最密集的行业之一

半导体与生物制药是全球研发最密集的行业。在2019年欧盟工业研发投资记分牌(2019 EU Industrial R&D Investment Scoreboard)上,排名前13位的半导体企业在研发方面的投入占销售额的18.4%,超过了生物制药行业。其中,前三名分别是美国的高通、中国台湾的联发科和美国的AMD。而在实际投入(actual investment)方面,三星以148亿欧元(约合176亿美元)领先,华为以127亿欧元(约合150亿美元)紧随其后,英特尔(Intel)以118亿欧元(约合137亿美元)排名第三。

截至2018年,总部位于美国企业的半导体研发投入占销售额的比重为17.4%,欧洲为13.9%,中国台湾为9.9%,日本为8.8%,中国大陆为8.4%,韩国为7.3%。欧洲半导体行业的研发强度已从2010年的16.5%下降到如今的13.9%。相反,中国半导体企业的研发强度从2012年的6.3%上升到2018年的8.4%。

8. 半导体行业资本投入高

半导体也属于资本密集型行业。2019年,美国半导体行业的全球资本支出(CapEx)总计319亿美元,占销售额的比例达到12.5%,仅次于美国的替代能源行业(alternative-energy sector)。在全球资本支出方面,2019年,总部位于韩国的企业对半导体行业的资本支出占全球该行业资本支出的31%,其次是美国(28%)、中国台湾(17%)、中国大陆(10%)、日本(5%)和欧洲(4%)。

开发新的半导体设计或建立新的半导体晶圆厂所需的专业知识、资金和规模非常高,而且还在不断增加。例如,将芯片设计从10 nm推进到7nm的成本增加了1亿美元以上,而从7 nm推进到5 nm的成本可能又翻了一番,从3亿美元增加到近5.5亿美元。但这仅是设计芯片的成本。据估计,截至2020年,新建14 16nm晶圆厂的平均成本为130亿美元;10nm晶圆厂的建造成本为150亿美元;7nm晶圆厂的建造成本为180亿美元;5nm晶圆厂的建造成本为200亿美元。

中国在全球半导体行业中举足轻重

1. 中国半导体实力不断增强

无论从芯片设计还是制造的角度来看,中国的半导体实力都在迅速增长。例如,2010 2015年,中国IC设计企业的数量就从485家增加到715家。2005 2015年,中国半导体行业复合年增长率为18.7%,半导体消费增长率为14.3%,全球半导体市场复合年增长率仅为4.0%。

目前,全球约有20%的无晶圆厂IC设计公司位于中国。正如德勤(Deloitte)的一份报告所述,“在集成电路设计方面,中国大陆的能力在过去5年里激增,并开始赶上中国台湾和韩国,成为亚太地区IC设计的主要参与者。”

2. 中国市场对美国半导体企业而言十分重要

中国市场相当重要,在许多美国半导体企业的收入中占据了相当大的比例。例如,2018年前四个月,中国市场占高通收入的60%以上,美光的50%以上,博通的45%左右,德州仪器的40%以上。2018年,美国半导体企业约36%的收入,即750亿美元,来自对中国的销售。

3. 中国半导体行业收入快速增长,但净利润率低

截至2019年底,全球136家最大的半导体企业创造的收入总计5718亿美元。其中,总部位于中国的企业为413亿美元,占全球收入的7.2%以上。中国企业占全球封装测试服务(OSAT)收入的21%(60亿美元);占代工收入的8%(45亿美元);占芯片设计和制造收入的7%(296亿美元)。2015年,中国企业占全球半导体行业收入的4%。由此可见,2015 2019年,中国企业的收入占比几乎翻了一番。

尽管中国半导体行业的收入发展迅速,但其净利润率只有英特尔(Intel)、三星(Samsung)、台积电(TSMC)、SK海力士(SK Hynix)和美光(Micron)等企业的一小部分。平均而言,2019年,非中国半导体企业的净利润率为19.4%,而 中国半导体企业的净利润率为12.1% 。

智库提议未来应采取哪些针对中国的措施

报告称,中国通过“重商主义”政策扭曲全球市场,阻碍创新型企业发展和研发投入,破坏半导体行业的“摩尔定律”。报告为应对“中国挑战”提出了国际层面和美国国内层面(落实《为芯片生产创造有益的激励措施法案》(CHIPS)、增加半导体研发的联邦投资)的建议。其中,国际层面的建议包括:

1. 扩大世贸组织有关补贴的内容

根据世贸组织的规定,将财政援助确定为补贴需要具备三个要素:1)财政捐款;2)由政府或公共机构给予;3)给予这种捐助的收益。

因此, 美国应与志同道合的国家和世贸组织合作,更新其规则,对激进的工业补贴施加更严厉的条件和惩罚。 首先 澄清“公共机构”的定义 ,将其扩大到包括国有企业和私营企业等受国家影响的实体。同时,要求给予国有企业的补贴不会对其他国家造成伤害。

志同道合的国家应专注于大幅 提高全球补贴的透明度 ,包括坚持及时、完整地通告补贴行为,并 对未及时通报的补贴建立损害推定 。各国还应召开世贸组织成员和世贸组织上诉机构之间的年度会议,讨论与过度使用补贴相关的模式和挑战。

2. 盟国应在半导体出口管制方面进行合作

对于全球半导体行业,中国既是一个重要的市场,也是一个重要的生产地。对支撑中国经济和军事崛起的核心技术的出口管制无疑将成为政策制定者认真考虑的工具。然而,正如ITIF曾经提出的,美国应尽最大可能与志同道合的国家合作, 协调出口管制措施 ,“因为出口管制制度在国际协调的情况下最为成功。”正如《出口管制改革法案》(Export Control Reform Act)第4811(5)条所述,“ 出口管制应与多边出口管制制度相协调。多边的出口管制是最有效的 ,应该将重点放在那些能够用来对美国及其盟友构成严重国家安全威胁的核心技术和其他物项上。”

报告提出,之前美国为了寻求实现经济或贸易政策目标,不断推行单边出口管制。其与代表特定半导体(包括半导体制造设备)行业和更广泛先进技术的传统瓦森纳协定(瓦协)之间需要形成一种新的管制方式。因此, 美国应避免实施单边出口管制,并寻求制定更雄心勃勃和更有效的诸边(plurilateral)办法,与德国、日本、韩国、中国台湾、荷兰和英国等具有本土半导体产能的国家(地区)共同实施出口管制。

这些国家应共同努力,就非市场经济国家的企业对全球半导体行业构成的威胁以及半导体技术的发展速度和进展达成共识。然后,这些国家 应在“瓦协”之外建立工作组,即“小瓦协”,对半导体技术和相关管制物项(现有管制物项范围之外)进行定义,并制定共同的许可政策。

3. 统一外商直接投资审查程序

《2018年外国投资风险审查现代化法案》(FIRRMA)指示美国海外投资委员会(CFIUS)建立一个正式程序,与盟国政府分享信息,并在投资安全问题上进行协调与合作。因此,美国应继续与志同道合的国家合作, 协调投资审查程序,并考虑扩大其例外国(excepted foreign states)名单, 将法国、德国、荷兰、意大利、日本和韩国等国包括在内。

4. 加强信息共享,打击对外经济间谍活动以及知识产权、技术或商业秘密盗窃

美国应该带领更多志同道合的国家建立一个更广泛的“五眼联盟”,专门致力于合作打击由国家资助的先进技术领域中的间谍活动。该组织可以 编制一份企图进行知识产权盗窃的企业及个人名单,同时制定机制,限制这些企业和个人在盟国市场上竞争。

5. 在半导体研发中实现盟国间合作

半导体创新的广泛性和复杂性意味着有机会招募来自志同道合的国家参与长期、高潜力的研发计划,如“semiconductor moon shots”(半导体登月计划)。这实际上是美国两党《芯片法案》(CHIPS for America Act)所预期的,它呼吁 设立一个7.5亿美元的多边安全基金 ,以支持安全微电子技术的发展和采用。在这方面, 确保微电子供应链的安全将是第一步 ,国会将在今年秋天审查《国防授权法案》(National Defense Authorization Act)的重新授权时,为这一条款拨出资金。

小结

根据宾夕法尼亚大学发布的2020年《全球智库指数报告》,ITIF排在当年美国顶级智库(Top Think Tanks)第39位,全球顶级 科技 政策智库(Top Science and Technology Policy Think Tanks)第4位。其主席阿特金森(Rob Atkinson)具有丰富的政府部门工作经历,其观点在政界具有一定的影响力。此前,ITIF的很多建议和倡导均被美国政府采纳。

ITIF一直对我国的 科技 创新政策持批评态度,并主张对我国采取强硬的反制措施。此份报告在半导体领域的建议与拜登政府联合盟国,发展国内制造业,遏制中国的思路不谋而合,因此很有可能被美国政府采纳。

事实上,碳基半导体晶体管最先是由美国与荷兰科学家在1998年制造出来的,截止到2006年之前,我国在碳纳米管晶体管上并没有明显的建树。可以说,我国对碳纳米管晶体管的研究开始于2000年,7年之后才制备出了性能超越硅晶体管的N型碳纳米管晶体管。由此可知,国外的碳纳米管晶体管的研究要比我们早的多,但是到了今天我们与国外的差距远没有硅晶体管那么大,甚至有超越国外的趋势。

总体而言,国外对碳纳米管晶体管的研究,还是比我们要领先的。在2013年,MIT研究团队发表了由178个晶体管组成的只能执行简单指令的碳纳米管计算机。在2019年,MIT团队已能制造完整的由14000个碳纳米管晶体管组成的处理器了。而国内于2017年制造了基于2500个碳纳米管晶体管的处理器,整体性能相当于因特尔4004的水平。至于在2019年国内是否研发出了集成更多碳纳米管晶体管的处理器,目前尚未有报道。

由于碳纳米管较容易聚合在一起,所以MIT团队利用了一种剥落工艺防止碳纳米管聚合在一起,以防晶体管无法正常工作。要知道MIT团队制造的CPU主频只有1Mhz,早期的80386处理器的频率还有16Mhz,也不是说2019年碳纳米管制造的计算机性能,仅相当于1985年制造的硅晶体管处理器的性能,这差距就太大了。离实用化,还有较长的一段路要走。因为碳纳米管晶体管之间的沟道和碳纳米管晶体管的体积过大,导致碳纳米管晶体管可以容纳的电流较小,容纳得电荷较少。MIT制造的由14000个碳纳米管晶体管组成的处理器中的沟道宽度为1.5微米,与现在纳米级相距较远。也只有缩小碳纳米管晶体管的体积和减小沟道的距离,才可以提升整体性能。

但是国内于2017年,就研制出了栅长为5纳米的碳纳米管晶体管,近日又研发出了栅长3纳米的碳纳米管晶体管。可以说,国内在碳纳米管晶体管的小型化上走的比较远。在2007年左右,国内以碳纳米管晶体管制造的处理器主频就高达5Ghz,要比国外2019年制造等我处理器主频高的多。从国外的相关产品来看,其碳纳米管栅长究竟达到了何种地步,也说不准。只不过,由此可知,在碳纳米管的研发上,国内技术最起码不会差国外技术太多,很有可能是同步发展的。

【碳基半导体芯片真的能够助力我国芯片突破西方禁锢?从此不依赖ASML吗?】

我们应该看到了近期的新闻,2020年5月26日,北京元芯碳基集成电路研究院宣布,解决了长期困扰碳基半导体材料制备的瓶颈! 该消息一出,瞬间引起了我们的关注,于是我们扎堆的认为, 碳基半导体芯片一定能够助力我国芯片的突破,打破西方禁锢?从此不依赖ASML。

了解现状——西方国家垄断的是硅基材料,而这些硅基材料在我国,我们的优势非常的低;一些关键性的材料还是倍国家技术给垄断的。而此时,我们想要打破束缚,就必须要寻找新的思路,于是出现了我们期待的:碳基半导体能否替代未来的硅基材料呢?

其实,有专家表示,北由于碳分子结构稳定,很难像硅材料一样通过掺杂其他物质改变性能。因此,碳纳米管要实现产业化,尚有很长一段路要走。不过,如今,北京元芯碳基集成电路研究院的突破确实给了我们很大的希望。

碳基半导体具有成本更低、功耗更小、效率更高。如果能够打破硅基半导体材料的束缚,走出一条全新的碳基半导体路,我们的芯片发展可能更有意义。

其实,以碳纤维(织物)或碳化硅等陶瓷纤维(织物)为增强体,实际上,我们熟知的石墨烯,生物碳以及碳纳米管等等都属于碳基材料。因此,想要碳基材料真正的运用与我们的实际,确实还是有一段路走,可是我们也已经进了一步了。

在芯片处理中, 碳基技术芯片 速度提升,功耗降低,未来更能够运用于多种领域,比如国防,气象,以及我们现在急需要解决的手机芯片,计算机芯片问题。这里我们得知道,相比国外技术, 我国对于碳基技术研究时间早,目前的技术是基于二十年前彭练矛院士提出的无掺杂碳基CMOS技术发展而来。

因此,我们不担心倍国外的技术给限制,因为我们的技术具有前瞻性,确实我们的芯片技术目前还是受限制,特别是ASML的光刻机,因为缺乏技术,在工艺制程方面受到制约。

因此,我们猜测的是,碳基材料未来很有可能打破ASML光刻机的束缚,打破欧美国家芯片的束缚,打造属于我们的芯片技术。

谢谢您的问题。碳基芯片在全球范围内还在朝量产迈进。

碳基芯片目前处于实验室阶段。 IBM和英特尔已经碳基在理论进行了多年的 探索 ,英特尔无果而放弃。IBM与英特尔退而求其次,用的是“掺杂”工艺制备碳纳米管晶体管。在国内,彭练矛和张志勇教授团队在半导体碳碳基半导体材料制备方面取得了研究重大进展,已经领先于全球,但也只是朝产业化进一步迈进。

实验室的成果离现实还很远 。全球碳基芯片真正要实现落地、商品化,除了雄厚的资金,必须要有现有的芯片兼容,直接借用现有半导体产业流程工艺,就可以大大加快碳基芯片产业化进程。

碳基技术需要企业参与 。北京碳基集成电路研究院以前在碳基技术上走在了前列,未来10年发展至少需要20亿元研发投入,这需要企业产研对接,需要企业认识其中的价值。阿里巴巴、腾讯都计划投入数千亿元用于新基建,参与到云服务和芯片全线布局,希望这样的 科技 龙头企业参与“碳基”集成电路,有助于缩短国内碳基技术的商用时间,站在全球视角, 科技 企业及早介入非常重要。

欢迎关注,批评指正。

首先,国外的研究并没有啥进展,因为没有企业投钱,高通的芯片利润这么高,谁会把大把的钱投到一个还不知道成不成功的项目上?

处于 探索 期,技术还远不成熟,距成熟产品路还很远。

如今的美国仍是半导体行业发展的优势者,在半导体产业发展之初,美国是如何发展并获得如今的地位?ICViews编译了美国半导体发展的简史,期望从美国半导体的发展历程中找到一些答案。

早期的美国产业政策为各种参与者提供了角色:小公司在技术前沿进行试验,而大公司追求流程改进,来扩大这些创新的规模。美国政府的需求确保了实验在财政上是可行的,而技术转让规定确保了大公司和小公司共享进步。重要的是,定期采购为企业提供了继续迭代所需的流动性,而无需依赖大规模的一次性产品。这种工业政策鼓励创新,确保小公司能够获得国内大规模生产创新设计的机会,同时允许大公司获得大规模生产这些创新设计的好处。

随着行业的成熟和竞争环境的变化,美国政策框架也发生了变化。

自20世纪70年代以来,产业政策逐渐被轻资本的“科学政策”战略所取代,而庞大的龙头企业和轻资产创新者已经取代了一个由大小生产型企业组成的强大生态系统。虽然这一战略最初取得了成功,但它已经造成了一个脆弱的体系。如今,半导体行业一方面受到脆弱的供应链的约束,这些供应链仅为少数拥有庞大资金链的公司量身定制,另一方面又受到许多轻资产设计公司的约束。

尽管美国半导体行业在上世纪90年代重获主导地位,但由于这种政策方针,导致如今美国半导体行业的技术和商业优势比以前更加脆弱。随着台积电的崛起超过英特尔,美国已经失去了前沿技术,美国企业面临着关键的供应瓶颈。疫情暴露出的供应链问题表明:半导体作为一种通用技术,在几乎所有主要供应链中都发挥着作用,且半导体生产是一个至关重要的经济和国家安全问题。虽然政策可以发挥明显作用,但对于技术进步的过程又有其限制性,支持新思想的发展,而不是将新技术转向资本。制程技术的创新是一种实践的过程,需要不断建立与营运新的生产线。但在美国的低资本环境中,半导体产业很难达到边做边学。

半导体供应链的每个部分都有技术创新,并受益于多样化的参与者和动态的劳动力市场。劳动力不仅是技术前沿的成本中心,而且是创新过程的关键投入。在解决目前的短缺问题时,政策制定者应该认识到半导体产业政策的教训,创建一种强劲竞争生态系统来激励创新。

在半导体行业成立之初,美国政府利用产业政策和科学政策帮助培育了半导体企业的多样化生态。财政支出为这个高度投机的行业提供了必要的流动性。为了保持创新和充满活力的竞争生态系统,战略也需要持续的干预。

美国美国国防部(DoD)使用采购协议和准监管措施来确保公司的生态系统和技术进步的广泛传播。美国政府合同为早期的公司创造了一个现成的市场,美国国防部渴望扮演第一客户的角色。由于确信会有大规模半导体生产的需求,对于许多早期的小公司来说产能投资在财务方面是可行的。

作为许多公司的核心客户,美国国防部对行业的最新技术发展有着清晰的看法,并利用这种看法直接促进公司和研究人员之间的对话和知识共享。与此同时,“第二来源”合同要求美国国防部购买的任何芯片都必须由至少两家公司生产,将采购与技术转让联系起来。美国国防部甚至要求贝尔实验室和其他大型研发部门公布技术细节,并广泛授权他们的技术,确保所有可能与美国国防部签约的公司都能获得创新的基石。

这一体系加快了行业的创新步伐,并迅速蔓延。政府采购协议确保了投资者的支出意愿,而且也增加了用于重复生产的资本货物的支出,从而帮助流程得到显著改进。与此同时,工人在整个系统中自由流动,可以在一家公司获得的知识应用于改善其他公司的生产流程。

在这种竞争环境下,结合那个时代的反垄断做法,鼓励大公司发展大型研究实验室,鼓励小公司进行疯狂的实验。成功的实验帮助创建了新的大公司,或者被已经存在的大公司扩大规模。来自美国国防部的行业指导帮助推动技术向新的方向发展,同时保持行业产能的一致性和针对性。至关重要的是,这一战略在隐性上优先考虑的是整个板块新技术的发展,而不是让任何一家公司的收入最大化或成本最小化。如果公司需要投资并持有资本货物的话,也有融资的渠道。政府保护这个行业不受所谓的“市场约束”的影响,以便产业把重点放在创新和生产上,而不是狭义的经济成功上。

然而,到20世纪60年代末,行业发展迅速,导致政府采购以及政府通过第二源合同等实施准监管的能力已经变得相对不重要了。20世纪40年代末,半导体行业的存在是以军事采购为基础的,但到60年代末,军事采购在市场中所占的比例不到四分之一。

20世纪70年代:蓬勃发展的商业市场

这一时期,尽管美国政府采购和指导相对不重要,但由于商业应用的繁荣和缺乏严肃的国际竞争,美国国内半导体公司迎来了黄金时代。

虽然产业政策促进了早期的创新和产能建设,但在20世纪70年代,政策的相对缺失却几乎没有被注意到。可以肯定的是,政府采购在20世纪70年代仍然发挥了一定的作用,但随着私营企业开始将电子产品纳入其供应链,它们成为了更重要的采购商。开始大规模生产计算机也与半导体的发展有着共生关系,因为芯片的需求推动了封装和集成的进步。

事实上,美国国防部的优先级和商业客户的优先级出现了分歧。美国国防部为特定的军事问题寻找合适的解决方案,尤其是基于非硅的或宇宙级的半导体的开发,这些涉及的商业应用很小。政府和半导体公司都认识到,这个行业不再需要直接指导。所以,双方的需求开始出现分歧。

在20世纪70年代,蓬勃发展的非国防市场意味着成功的小公司和大公司在没有政府支持或协调的情况下也能共存。技术的改进转化为工艺的改进,后者反过来又推动了前者的进一步改进。MOS IC、微处理器、DRAM等新发明将行业推向了新的高度,并递归式地提出了进一步的创新路径。

在普遍繁荣和创新的环境下,半导体展现出作为通用技术的重要性,在整个经济中都得到了广泛应用。尽管美国的大型研究实验室以及制造部门持有了大量资产,但在国际上缺少竞争以及市场的蓬勃发展确保了无论是在创新还是利润方面,大多数投资最终都是可行的。

20世纪80年代:国际竞争激烈

然而,这种竞争环境所带来乐观情况在上世纪80年代被打断,当时,在日本国际贸易产业省的产业政策指导下,美国将市场和技术主导地位拱手让给了日本企业。

美国政府最初不得不创建半导体市场,而日本能够围绕一个快速增长且已经存在的市场制定产业政策。因此,日本能够采取比美国严厉得多的建设基础设施的政策,协调计算机和半导体领域的合资企业,因为日本知道自己的产品有现成的商业市场。虽然政府支持和协调投资的战略与美国在五六十年代使用的战略相同,但用于实施该战略的战术是为适应上世纪80年代的竞争环境而量身定做的。

来自日本的竞争对美国公司产生了巨大的影响。在随后的市场动荡中,许多人永久退出了DRAM市场。行业还成立了倡导小组来进行生产协调,并游说政府对关税和实施贸易政策进行干预。半导体工业协会游说要对日本的“倾销”采取保护措施,同时成立了半导体研究公司,组织和资助与商业市场相关但与美国国防部无关的半导体开发方面的学术研究。半导体制造联盟由行业成员与美国国防部共同资助,一开始的目的主要是用较早期的产业政策推动企业之间的横向合作。但是,为了成本的最小化,联盟很快就把重点转向供应商与制造商之间的垂直整合上面。

落后的半导体已经成为商品,可互换,并根据单位成本进行判断。由于技术和经济因素的共同作用,传统的垂直整合公司在20世纪80年代开始解体。鉴于当时美国的经济形势,在竞争激烈得多的全球市场上,人们几乎没有兴趣投资于低附加值活动的产能。

相反,大公司吸纳了小公司仍然拥有的生产力,创建了大企业集团。MOS晶体管作为行业主导设计的出现,公司开始采用类似的设计原则,使专攻制造的“代工厂”变得经济。随后的垂直解体导致了大型、垂直整合的企业集团的出现,与专注于设计的小型“无晶圆厂”公司共存,这些公司进行设计,但不生产芯片。理论上,这些“无晶圆厂”公司在追求创新设计策略的同时最小化成本,且保留了灵活性。20世纪90年代,随着美国公司开创新的产品类别,日本公司面临来自韩国的竞争,美国行业对这一战略的接纳导致了市场份额的复苏。

在政策方面,美国从未回归到国内产业政策。相反,国外产业政策计划的成功是国内整合、垄断、贸易保护主义以及科学研究资金合力来实现的。

20世纪90年代:科学政策,而非产业政策

20世纪80年代本行业面临着技术和竞争环境的变化,90年代则见证了美国新的“科学政策”走向高潮。20世纪90年代,无论是美国过去采取的那种政策,还是更多受到日本通产省影响的做法,美国都没有重返产业政策,而是将“科学政策”的引入视为政府在半导体制造领域采取行动的新范式。科学政策的重点是促进与公司个体的公私合作,让行业研发与学术研发更紧密地结合,保证研究力量的广泛性,形成可支持轻资产运营的创新型公司的行业结构。

政策目标从创建一个具有强大供应链的强大竞争生态系统转变为创建公私机构,以协调研究人员、无晶圆厂设计公司、设备供应商和大型“冠军企业”之间的复杂切换。这样一来,没有企业需要在研发上投入过量的资金,从而保持全球成本竞争力,而政府也可以避免大规模投资支出。下面的图表来自于半导体行业协会制作的1994年美国国家半导体技术路线图,展示了科学政策背后的策略:

“科学政策”的中心主题是非冗余的效率,这与早期的产业政策侧重于冗余和重复,形成对比。早期产业政策大大加快创新步伐,并确保了单个公司的失败不会影响供应链的稳健,但这确实意味着大量的重复投资。尽管这种方法有助于推动流程改进的采用,静态股东价值最大化表明,这种重复在经济上太浪费了。

过去几十年的产业政策促进了大规模就业,这是创新的核心驱动力。而20世纪90年代的“科学政策”为了最低效率而避免了这种做法。员工频繁更换公司,边做边学是创新的核心途径。事实上,《经济地理》中的“非交易的相互依赖”文献在一定程度上解释了半导体行业工人群体的融合对该行业的快节奏创新是多么重要。虽然在一个地方保持大量的工人是许多进步的关键,但在这个新的竞争环境中,这被视为一种浪费。劳动力在单位成本中占有相当大的比例,企业相信,如果他们能有策略地缩小规模,全球竞争力就会恢复。

在半导体行业的早期,相对价格不敏感的政府合同占总销售额的很大一部分,这种低效率被看作是创新的成本。随着外国竞争对手的加入,成本敏感的商业市场成为半导体的主要买家,这种能力的复制似乎像是一个纯粹的成本中心,对很多公司却没有什么好处。对盈利能力的担忧意味着要确保重复的工作要尽可能少,以便在对价格敏感、竞争激烈的环境下控制成本。这造成了一个集体行动的问题,即削减开支符合每个企业的利益,但这样做进一步恶化了美国企业的创新能力。

在20世纪90年代,美国政府没有回到产业政策,而是选择了成本低得多的科学政策项目。理想情况下,“科学政策”将允许政府协调企业相互矛盾的节约愿望,而不会在技术上进一步落后。然而,为了符合时代精神,美国政府也在努力节约,不会为产业政策在新的竞争环境中取得成功提供所需的大规模财政支持。

相反,政府将花费更少的钱,并尝试开创一种劳动分工,允许所有参与者在不牺牲技术前沿的前提下削减成本,以追求利润。为此,它一方面资助学术研究实验室的研发,另一方面资助产业集团将研究转化为商业能力。在某种程度上,这进一步降低了单个公司的研发投资,因为进步只创造了最小的竞争优势。这种结构没有建立具有重叠供应链的生态系统,而是形成了一种分工,每家企业与机构都负责一个明显可分割的单独部分。同时,宽松的贸易政策与密切的贸易网络,让企业能更经济地进入无工厂模式,发展轻资产战略。目的是通过解决一个集体行动问题,减少整个系统的冗余,从而为公共和私营部门以最经济的方式重新夺回技术前沿。

在短期内,这个策略奏效了!到上世纪90年代末,美国半导体和其他技术领域的投资普遍繁荣,美国成功地恢复了技术优势。这个行业得以在保持国际竞争力的同时,又不需要国内产业政策大规模财政支持的情况下进行创新。大多数公司个体把研发重点集中在生产过程开发的下一两个节点上,而更长期的研究则是由政府资助的学术研究人员来组织。产业团体介入,将这种学术研究转化为商业行为,并在很大程度上消除了研发和生产的重复劳动成本。大型集中的研究实验室被掏空,供应链变得更狭隘,仅针对少数核心公司的研究需求。

21世纪:互联网泡沫破灭和收益递减

然而,这种策略的短期成功是以巨大的长期成本为代价的。劳动力和资本的冗余有助于确保公司能够快速改进内部化流程,同时也培训下一代工程师和技术人员。虽然从单一时期股东收益静态最大化的角度来看,这种重复可能是多余的,但它对确保长期创新轨迹至关重要。“消除冗余”和“增加脆弱性”是同一枚硬币的两面。

从长期来看,劳动力和资本投资不足会在某些方面显现出来,无论是在资产负债表上,还是在创新能力上,或者两者兼而有之。就目前情况而言,美国有可能失去其在尖端设计方面的优势,而且在尖端制造领域的霸主地位已在很大程度上被台积电夺走。将投资过程中的一部分分配给每家公司可能会使每家公司的资产负债表看起来更加稳健,但由于持续的投资不足,整个行业已经变得更加脆弱。数十年的劳动力成本最小化使得熟练技术人员和工程师的数量减少,而数十年的产能投资不足也阻碍了国内企业应对目前劳动力短缺的能力。

该行业目前的问题是科学政策战略的长期自然结果,该战略在上世纪90年代末和21世纪初似乎非常成功。整合和垂直整合的驱动力集中在学术实验室的长期研究、庞大的“冠军企业”和轻资产的“无晶圆厂”创新者,创造了一个摇摇欲坠的竞争生态系统。

由于这些冠军企业在竞争格局中占据的比例非常大,它们的研发优先级和中间投入需求为整个行业设定了条件。像英特尔这样的大买家可以或明或暗地利用他们的相对垄断权力,围绕他们的需求来构建供应链。当更广泛的经济需求发生转变时,例如疫情爆发以来,这些脆弱的供应链很容易出现问题。这种脆弱性是供应链优化的结果,但这种优化针对的是短期盈利能力以及消除冗余,而不是针对整个经济的需求。

无论是有意还是无意,这些大型也会围绕自身的财务需求和计划来制定技术发展道路。因此,学术实验室的研发与税收优化和私营企业单位成本最小化相结合的政策组合,创造了重大的技术路径依赖。与此同时,从技术意义上讲,这些企业“太大而不能倒”:如果它们错过了流程改进,同样规模的国内竞争对手的缺席意味着整个行业都错过了这一进步。在这个意义上,技术政策作为一个整体被委托给了私营行为者。

从研发到生产的过程,也出现不一致的反馈。科学政策的关键是将知识产权的创新与生产过程的创新分开;也就是说,科学政策优先考虑研究、设计与创意,而不是实施、生产与投资。因此,专注于设计的无工厂公司兴起,并将制造外包给海外的代工厂。

然而,把研发放在首位反而会降低创新的速度。单是补贴研发跟激励离岸外包没有什么区别:政策奖励的是知识产权的发展,而不是有形资产的所有权。问题在于,过程改进来自于新物理资产所包含的新技术的实施。“边做边学”是技术创新的关键部分。优秀的工程师希望对供应链每一个环节的生产过程的每一个步骤都进行创新。前沿设计的离岸和外包生产给流程周围引入了一个黑箱,导致收益无法实现最大化的类似问题无法得到纠正。只把焦点放在研发上,会把这些过程改进的发展离岸化,导致国内的生产商吃不饱,同时还阻碍了劳动力开发新技能。

学术研究偏离了商业化的道路,无法驱动产业的创新。考虑到学术研究往往围绕着与当前生产相关性低的问题展开,因此有时无法为现有技术的替代应用或替代过程驱动的创新路径提供见解。由于科学政策让这个群体负责整个行业的长期创新战略,这一盲点不能被忽视。事实上,摩尔定律的失败,以及在许多应用中为异质芯片设计独特的转变,这些都很好地说明了创新在任何时候往往都暗示着技术发展存在。

数十年来在工业产能和就业方面的投资失败,造成了美国企业高度依赖外部制造工厂的局面。台积电目前投资于一家中国台湾本土制造工厂的计划,表明该公司试图通过收购来解决这个问题,而不减少我们对单一供应商提供领先设计的依赖。相反,我们应该回顾半导体生产初期的产业政策 历史 ,重新夺回技术前沿,在供应链的每一个节点上推动创新。

如今,美国面临着半导体短缺和创新能力减弱的问题,政策制定者正考虑采取严肃的干预措施。虽然现在解决目前的短缺可能已经太晚了,但可以防止下一次短缺。美国两党对基础设施支出的广泛支持、疫情后重建得更好的必要性,以及对半导体采购的国家安全担忧,都应该鼓励政策制定者认为,现在正是进行雄心勃勃的改革的时候。如上所述,半导体产业政策的 历史 为如何最好地创造高就业、技术创新和强大的国内供应链提供了许多经验教训。

历史 表明,科学政策是产业政策的必要补充,但本身是不够的。协调研发是任何解决方案的必要组成部分,但并非全部解决方案。为了获得工艺改进,并确保劳动力具备在技术前沿 *** 作的足够技能,该行业需要看到持续的产能扩张。然而,正如我们之前所显示的,在低需求环境下,私营企业明显不愿进行不确定的投资。产业政策,通过结合政府采购和融资担保、直接融资等方式,是为该行业提供充足流动性的唯一途径,以确保产能扩张足够快,该行业保持在技术前沿。同时,政府有财政能力让国内企业生产落后的半导体产品,以保障国家安全和供应链的d性理由。从长远来看,以股东最大化为目标的产业外包政策尚未形成。

同样重要的是要认识到强劲的经济需求和因此而紧张的劳动力市场,特别是半导体生产的劳动力市场,对这些政策的成功至关重要。由政府主导的强有力的投资建设将为各种经验和技能水平的人创造良好的就业机会。这将创造高技能的劳动力,以及驱动有意义的过程改进的边做边学的充足机会。在高技能、高资本密集度的行业,劳动力几乎就像另一种形式的资本商品,为投资支付明显的红利。然而,在缺乏足够的就业机会的情况下,这些专业技能会随着工人转向其他行业而消失。这并不是说提高劳动力技能就足够了:如果立法创造了培训项目,却没有同时创造必要的就业机会和投资,那么很快就会弄巧成拙。

在半导体和其他关键行业的产业政策所需的资金投入规模上,一些人可能会犹豫不决。这是一个巨大的市场,有着巨大的价格标签,现代制造工厂的成本高达数十亿美元。然而,半导体是一种关键的通用技术,几乎进入每一个供应链。大规模的产业政策可以防止瓶颈时期拖累经济增长,同时为国家安全需求创建一个强大的国内供应链。相对于最初对半导体技术的投资,回归产业政策的成本要高得多,但回报会更高。作为4万亿美元基础设施或两党供应链法案的一部分,振兴落后和领先的行业,并恢复一个强大的竞争生态系统,是一项不容错过的好投资。

政策目标很简单:制定一个扩大的产业政策工具包,以鼓励创新、国内劳动力市场紧张以及维护关键的供应链基础设施。半导体作为一个产业,由于投资规模和所需的工作岗位,是制定这些政策工具的理想起点。重建一个强劲的创新环境,也将有助于美国持久地回到技术前沿,并创造就业和投资,在未来几年带来回报。半导体在现代工业经济中发挥着至关重要的作用,它们的技术路线太重要了,不能以短期盈利能力为指导。政府有机会也有责任利用产业政策在下一次短缺发生之前阻止它,同时确保美国保持其在技术前沿的地位。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7654331.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-08
下一篇 2023-04-08

发表评论

登录后才能评论

评论列表(0条)

保存