原理是根据粒子沉积在半导体内的能量转化为激发的电子空穴对数,然后在所加电压下搜集,搜集的电子数即电荷越多反映的就是幅度越大,也是激发的电子对数多,表明沉积的能量大
半导体探测器有两个电极,加有一定的偏压.当入射粒子进入半导体探测器的灵敏区时,即产生电子-空穴对.在两极加上电压后,电荷载流子就向两极作漂移运动﹐收集电极上会感应出电荷,从而在外电路形成信号脉冲.但在半导体探测器中,入射粒子产生一个电子-空穴对所需消耗的平均能量为气体电离室产生一个离子对所需消耗的十分之一左右,因此半导体探测器比闪烁计数器和气体电离探测器的能量分辨率好得多.追问:为什么电离能越小,能量分辨率越高?回答:关于为什么电离能越小,能量分辨率越高,这是因为影响一个谱仪能量分辨率的因素很多,但电离过程产生的离子对数的涨落是最基本的影响因素,它限制了分辨率所能达到的极限.因而大幅改善能量分辨率的唯一途径,就是减少统计涨落,也就是必须增加单位能量产生的信息载流子数目.信息载流子是一个统称,在气体探测器中它是入射带电粒子在灵敏体积内产生的电子—离子对;在闪烁探测器中为被光电倍增管第一打拿极收集的光电子;而在半导体探测器中则为在探测器灵敏体积中产生的电子—空穴对.因此,电离能与仪器能量分辨率密切相关.说实话这个问题还是比较复杂的,简单说,就是辐射能量使探测器的某些原子电离,电离放出的电子或者光子,通过探测器,如光电倍增管等接受,传给外面的电路形成脉冲,然后根据这些脉冲进行某些计算。下面是某教材里面的一些总结性的东西,不知道能不能帮到你:探测器把核辐射转变为电信号的物理过程在很大程度上决定了探测器的主要技术性能和用途。就这三类探测器而言,核辐射转变为电信号的过程不管多么复杂和不同,概括地讲总是分为两个阶段。第一阶段:入射的粒子如果不是带电的,如γ光子和中子,则通过与探测器物质的相互作用,转变或产生出带电粒子,这些带电粒子在探测器内的一个特定区域使原子或分子电离和激发;第二阶段:被电离和激发的原子,在探测器的外加电场中作定向移动,因而在探测器外部负载电路中给出一个电流信号,称为探测器的本征电流信号。这个本征电流信号的特点完全取决于核辐射在探测器内转变为电信号的物理过程,而与探测器的外部负载电路无关。
为了使探测器内部产生一定电场,需供给探测器以一定数值的直流电压。在探测器与提供直流电压的电源之间还有若干个电子元件。为了把本征电流信号改造成为适合测量任务需要的电信号,在探测器与电信号处理仪器之间也需要一些电子线路和元件。所有这些元件组成了探测器的外部负载电路。对大多数测量任务来说,这三类探测器可以把本征电流信号改造成为慢变化的电流信号,也可以改造成脉冲信号,然后再被送到电信号处理仪器中。输出慢变化的电流信号的状况通常称为探测器的电流型工作状况,而输出脉冲信号的状况称为探测器的脉冲型工作状况。大多数探测器可以工作在这两种状况中的任何一种。
以伽玛射线的测量为例,目前比较常用的是高纯锗伽玛谱仪,是通过半导体探测的,实际使用的半导体有两种,一种叫做N型,另一种叫做P型。它们都是在纯半导体材料中掺入不同杂质而构成的。掺有第三族元素如硼(称受主)的硅或锗叫做P型,其中有许多空穴。掺有第五族元素如磷(称施主)的硅或锗叫做N型,其中有许多自由电子。通常的半导体计数器材料并不是纯的半导体,而是利用所谓这种P-N结型半导体。P-N结型半导体探测器就是指P型半导体与N型半导体直接接触(接触距离小于10-7cm)组成的一种元件。在接触的交界处由于剩余电子和剩余空穴互相补充,故在交界处电子和空穴的密度特别小,即相当于电阻特别大。在工作时加上反向电压(即P型加负压,N型处加正压),电子和空穴背向运动,造成了无自由载流子的耗尽层,又称半导体探测器的灵敏体积。当带电粒子进入此灵敏体积后,由于电离产生了电子-空穴对,电子和空穴受电场的作用,分别向二个电极运动,并被电极收集,从而产生脉冲信号。此脉冲信号被低噪声的电荷灵敏放大器和主放大器放大后,由多道分析器或计数器记录。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)