半导体器件(semiconductor device)通常,利用不同的半导体材料、采用不同的工艺和几何结构,已研制出种类繁多、功能用途各异的多种晶体二极体,晶体二极体的频率覆盖范围可从低频、高频、微波、毫米波、红外直至光波。三端器件一 般是有源器件,典型代表是各种电晶体(又称晶体三极体)。电晶体又可以分为双极型电晶体和场效应电晶体两 类。根据用途的不同,电晶体可分为功率电晶体微波电晶体和低噪声电晶体。除了作为放大、振荡、开关用的 一般电晶体外,还有一些特殊用途的电晶体,如光电晶体、磁敏电晶体,场效应感测器等。这些器件既能把一些 环境因素的信息转换为电信号,又有一般电晶体的放大作用得到较大的输出信号。此外,还有一些特殊器件,如单结电晶体可用于产生锯齿波,可控矽可用于各种大电流的控制电路,电荷耦合器件可用作摄橡器件或信息存 储器件等。在通信和雷达等军事装备中,主要靠高灵敏度、低噪声的半导体接收器件接收微弱信号。随着微波 通信技术的迅速发展,微波半导件低噪声器件发展很快,工作频率不断提高,而噪声系数不断下降。微波半导体 器件由于性能优异、体积小、重量轻和功耗低等特性,在防空反导、电子战、C(U3)I等系统中已得到广泛的套用 。
分类 晶体二极体晶体二极体的基本结构是由一块 P型半导体和一块N型半导体结合在一起形成一个 PN结。在PN结的交界面处,由于P型半导体中的空穴和N型半导体中的电子要相互向对方扩散而形成一个具有空间电荷的偶极层。这偶极层阻止了空穴和电子的继续扩散而使PN结达到平衡状态。当PN结的P端(P型半导体那边)接电源的正极而另一端接负极时,空穴和电子都向偶极层流动而使偶极层变薄,电流很快上升。如果把电源的方向反过来接,则空穴和电子都背离偶极层流动而使偶极层变厚,同时电流被限制在一个很小的饱和值内(称反向饱和电流)。因此,PN结具有单向导电性。此外,PN结的偶极层还起一个电容的作用,这电容随着外加电压的变化而变化。在偶极层内部电场很强。当外加反向电压达到一定阈值时,偶极层内部会发生雪崩击穿而使电流突然增加几个数量级。利用PN结的这些特性在各种套用领域内制成的二极体有:整流二极体、检波二极体、变频二极体、变容二极体、开关二极体、稳压二极体(曾讷二极体)、崩越二极体(碰撞雪崩渡越二极体)和俘越二极体(俘获电浆雪崩渡越时间二极体)等。此外,还有利用PN结特殊效应的隧道二极体,以及没有PN结的肖脱基二极体和耿氏二极体等。
双极型电晶体它是由两个PN结构成,其中一个PN结称为发射结,另一个称为集电结。两个结之间的一薄层半导体材料称为基区。接在发射结一端和集电结一端的两个电极分别称为发射极和集电极。接在基区上的电极称为基极。在套用时,发射结处于正向偏置,集电极处于反向偏置。通过发射结的电流使大量的少数载流子注入到基区里,这些少数载流子靠扩散迁移到集电结而形成集电极电流,只有极少量的少数载流子在基区内复合而形成基极电流。集电极电流与基极电流之比称为共发射极电流放大系数?。在共发射极电路中,微小的基极电流变化可以控制很大的集电极电流变化,这就是双极型电晶体的电流放大效应。双极型电晶体可分为NPN型和PNP型两类。
场效应电晶体它依靠一块薄层半导体受横向电场影响而改变其电阻(简称场效应),使具有放大信号的功能。这薄层半导体的两端接两个电极称为源和漏。控制横向电场的电极称为栅。
根据栅的结构,场效应电晶体可以分为三种:
①结型场效应管(用PN结构成栅极)
②MOS场效应管(用金属-氧化物-半导体构成栅极,见金属-绝缘体-半导体系统)
③MES场效应管(用金属与半导体接触构成栅极)其中MOS场效应管使用最广泛。尤其在大规模积体电路的发展中,MOS大规模积体电路具有特殊的优越性。MES场效应管一般用在GaAs微波电晶体上。
在MOS器件的基础上,又发展出一种电荷耦合器件 (CCD),它是以半导体表面附近存储的电荷作为信息,控制表面附近的势阱使电荷在表面附近向某一方向转移。这种器件通常可以用作延迟线和存储器等配上光电二极体列阵,可用作摄像管。
命名方法中国半导体器件型号命名方法
半导体器件型号由五部分(场效应器件、半导体特殊器件、复合管、PIN型管、雷射器件的型号命名只有第三、四、五部分)组成。五个部分意义如下:
第一部分:用数字表示半导体器件有效电极数目。2-二极体、3-三极体
第二部分:用汉语拼音字母表示半导体器件的材料和极性。表示二极体时:A-N型锗材料、B-P型锗材料、C-N型矽材料、D-P型矽材料。表示三极体时:A-PNP型锗材料、B-NPN型锗材料、C-PNP型矽材料、D-NPN型矽材料。
第三部分:用汉语拼音字母表示半导体器件的类型。P-普通管、V-微波管、W-稳压管、C-参量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光电器件、K-开关管、X-低频小功率管(F<3MHz,Pc3MHz,Pc<1W)、D-低频大功率管(f1W)、A-高频大功率管(f>3MHz,Pc>1W)、T-半导体晶闸管(可控整流器)、Y-体效应器件、B-雪崩管、J-阶跃恢复管、CS-场效应管、BT-半导体特殊器件、FH-复合管、PIN-PIN型管、JG-雷射器件。
第四部分:用数字表示序号
第五部分:用汉语拼音字母表示规格号
例如:3DG18表示NPN型矽材料高频三极体
日本半导体分立器件型号命名方法
日本生产的半导体分立器件,由五至七部分组成。通常只用到前五个部分,其各部分的符号意义如下:
第一部分:用数字表示器件有效电极数目或类型。0-光电(即光敏)二极体三极体及上述器件的组合管、1-二极体、2三极或具有两个pn结的其他器件、3-具有四个有效电极或具有三个pn结的其他器件、┄┄依此类推。
第二部分:日本电子工业协会JEIA注册标志。S-表示已在日本电子工业协会JEIA注册登记的半导体分立器件。
第三部分:用字母表示器件使用材料极性和类型。A-PNP型高频管、B-PNP型低频管、C-NPN型高频管、D-NPN型低频管、F-P控制极可控矽、G-N控制极可控矽、H-N基极单结电晶体、J-P沟道场效应管、K-N 沟道场效应管、M-双向可控矽。
第四部分:用数字表示在日本电子工业协会JEIA登记的顺序号。两位以上的整数-从"11"开始,表示在日本电子工业协会JEIA登记的顺序号不同公司的性能相同的器件可以使用同一顺序号数字越大,越是产品。
第五部分: 用字母表示同一型号的改进型产品标志。A、B、C、D、E、F表示这一器件是原型号产品的改进产品。
美国半导体分立器件型号命名方法
美国电晶体或其他半导体器件的命名法较混乱。美国电子工业协会半导体分立器件命名方法如下:
第一部分:用符号表示器件用途的类型。JAN-军级、JANTX-特军级、JANTXV-超特军级、JANS-宇航级、(无)-非军用品。
第二部分:用数字表示pn结数目。1-二极体、2=三极体、3-三个pn结器件、n-n个pn结器件。
第三部分:美国电子工业协会(EIA)注册标志。N-该器件已在美国电子工业协会(EIA)注册登记。
第四部分:美国电子工业协会登记顺序号。多位数字-该器件在美国电子工业协会登记的顺序号。
第五部分:用字母表示器件分档。A、B、C、D、┄┄-同一型号器件的不同档别。如:JAN2N3251A表示PNP矽高频小功率开关三极体,JAN-军级、2-三极体、N-EIA 注册标志、3251-EIA登记顺序号、A-2N3251A档。
国际电子联合会半导体器件型号命名方法
德国、法国、义大利、荷兰、比利时等欧洲国家以及匈牙利、罗马尼亚、南斯拉夫、波兰等东欧国家,大都采用国际电子联合会半导体分立器件型号命名方法。这种命名方法由四个基本部分组成,各部分的符号及意义如下:
第一部分:用字母表示器件使用的材料。A-器件使用材料的禁频宽度Eg=0.6~1.0eV 如锗、B-器件使用材料的Eg=1.0~1.3eV 如矽、C-器件使用材料的Eg>1.3eV 如砷化镓、D-器件使用材料的Eg<0.6eV 如锑化铟、E-器件使用复合材料及光电池使用的材料
第二部分:用字母表示器件的类型及主要特征。A-检波开关混频二极体、B-变容二极体、C-低频小功率三极体、D-低频大功率三极体、E-隧道二极体、F-高频小功率三极体、G-复合器件及其他器件、H-磁敏二极体、K-开放磁路中的霍尔元件、L-高频大功率三极体、M-封闭磁路中的霍尔元件、P-光敏器件、Q-发光器件、R-小功率晶闸管、S-小功率开关管、T-大功率晶闸管、U-大功率开关管、X-倍增二极体、Y-整流二极体、Z-稳压二极体。
第三部分:用数字或字母加数字表示登记号。三位数字-代表通用半导体器件的登记序号、一个字母加二位数字-表示专用半导体器件的登记序号。
第四部分:用字母对同一类型号器件进行分档。A、B、C、D、E┄┄-表示同一型号的器件按某一参数进行分档的标志。
除四个基本部分外,有时还加后缀,以区别特性或进一步分类。常见后缀如下:
1、稳压二极体型号的后缀。其后缀的第一部分是一个字母,表示稳定电压值的容许误差范围,字母A、B、C、D、E分别表示容许误差为±1%、±2%、±5%、±10%、±15%其后缀第二部分是数字,表示标称稳定电压的整数数值后缀的第三部分是字母V,代表小数点,字母V之后的数字为稳压管标称稳定电压的小数值。
2、整流二极体后缀是数字,表示器件的最大反向峰值耐压值,单位是伏特。
3、晶闸管型号的后缀也是数字,通常标出最大反向峰值耐压值和最大反向关断电压中数值较小的那个电压值。
如:BDX51-表示NPN矽低频大功率三极体,AF239S-表示PNP锗高频小功率三极体。
积体电路把晶体二极体、三极体以及电阻电容都制作在同一块矽晶片上,称为积体电路。一块矽晶片上集成的元件数小于 100个的称为小规模积体电路,从 100个元件到1000 个元件的称为中规模积体电路,从1000 个元件到100000 个元件的称为大规模积体电路,100000 个元件以上的称为超大规模积体电路。积体电路是当前发展计算机所必需的基础电子器件。许多工业先进国家都十分重视积体电路工业的发展。积体电路的集成度以每年增加一倍的速度在增长。每个晶片上集成256千位的MOS随机存储器已研制成功,正在向1兆位 MOS随机存储器探索。
光电器件 光电探测器光电探测器的功能是把微弱的光信号转换成电信号,然后经过放大器将电信号放大,从而达到检测光信号的目的。光敏电阻是最早发展的一种光电探测器。它利用了半导体受光照后电阻变小的效应。此外,光电二极体、光电池都可以用作光电探测元件。十分微弱的光信号,可以用雪崩光电二极体来探测。它是把一个PN结偏置在接近雪崩的偏压下,微弱光信号所激发的少量载流子通过接近雪崩的强场区,由于碰撞电离而数量倍增,因而得到一个较大的电信号。除了光电探测器外,还有与它类似的用半导体制成的粒子探测器。
半导体发光二极体半导体发光二极体的结构是一个PN结,它正向通电流时,注入的少数载流子靠复合而发光。它可以发出绿光、黄光、红光和红外线等。所用的材料有 GaP、GaAs、GaAs1-xPx、Ga1-xAlxAs、In1-xGaxAs1-yPy等。
半导体雷射器如果使高效率的半导体发光管的发光区处在一个光学谐振腔内,则可以得到雷射输出。这种器件称为半导体雷射器或注入式雷射器。最早的半导体雷射器所用的PN结是同质结,以后采用双异质结结构。双异质结雷射器的优点在于它可以使注入的少数载流子被限制在很薄的一层有源区内复合发光,同时由双异质结结构组成的光导管又可以使产生的光子也被限制在这层有源区内。因此双异质结雷射器有较低的阈值电流密度,可以在室温下连续工作。
光电池当光线投射到一个PN结上时,由光激发的电子空穴对受到PN结附近的内在电场的作用而向相反方向分离,因此在PN结两端产生一个电动势,这就成为一个光电池。把日光转换成电能的日光电池很受人们重视。最先套用的日光电池都是用矽单晶制造的,成本太高,不能大量推广使用。国际上都在寻找成本低的日光电池,用的材料有多晶矽和无定形矽等。
其它利用半导体的其他特性做成的器件还有热敏电阻、霍耳器件、压敏元件、气敏电晶体和表面波器件等。
未来发展今年是摩尔法则(Moore'slaw)问世50周年,这一法则的诞生是半导体技术发展史上的一个里程碑。
这50年里,摩尔法则成为了信息技术发展的指路明灯。计算机从神秘不可近的庞然大物变成多数人都不可或缺的工具,信息技术由实验室进入无数个普通家庭,网际网路将全世界联系起来,多媒体视听设备丰富著每个人的生活。这一法则决定了信息技术的变化在加速,产品的变化也越来越快。人们已看到,技术与产品的创新大致按照它的节奏,超前者多数成为先锋,而落后者容易被淘汰。
这一切背后的动力都是半导体晶片。如果按照旧有方式将电晶体、电阻和电容分别安装在电路板上,那么不仅个人电脑和移动通信不会出现,连基因组研究、计算机辅助设计和制造等新科技更不可能问世。有关专家指出,摩尔法则已不仅仅是针对晶片技术的法则不久的将来,它有可能扩展到无线技术、光学技术、感测器技术等领域,成为人们在未知领域探索和创新的指导思想。
毫无疑问,摩尔法则对整个世界意义深远。不过,随着电晶体电路逐渐接近性能极限,这一法则将会走到尽头。摩尔法则何时失效?专家们对此众说纷纭。早在1995年在芝加哥举行信息技术国际研讨会上,美国科学家和工程师杰克·基尔比表示,5纳米处理器的出现或将终结摩尔法则。中国科学家和未来学家周海中在此次研讨会上预言,由于纳米技术的快速发展,30年后摩尔法则很可能就会失效。2012年,日裔美籍理论物理学家加来道雄在接受智囊网站采访时称,"在10年左右的时间内,我们将看到摩尔法则崩溃。"前不久,摩尔本人认为这一法则到2020年的时候就会黯然失色。一些专家指出,即使摩尔法则寿终正寝,信息技术前进的步伐也不会变慢。
图书信息书 名: 半导体器件
作 者:布伦南高建军刘新宇
出版社:机械工业出版社
出版时间: 2010年05月
ISBN: 9787111298366
定价: 36元
内容简介《半导体器件:计算和电信中的套用》从半导体基础开始,介绍了电信和计算产业中半导体器件的发展现状,在器件方面为电子工程提供了坚实的基础。内容涵盖未来计算硬体和射频功率放大器的实现方法,阐述了计算和电信的发展趋势和系统要求对半导体器件的选择、设计及工作特性的影响。
《半导体器件:计算和电信中的套用》首先讨论了半导体的基本特性接着介绍了基本的场效应器件MODFET和M0SFET,以及器件尺寸不断缩小所带来的短沟道效应和面临的挑战最后讨论了光波和无线电信系统中半导体器件的结构、特性及其工作条件。
作者简介Kevin F Brennan曾获得美国国家科学基金会的青年科学家奖。2002年被乔治亚理工大学ECE学院任命为杰出教授,同年还获得特别贡献奖,以表彰他对研究生教育所作出的贡献。2003年,他获得乔治亚理工大学教职会员最高荣誉--杰出教授奖。他还是IEEE电子器件学会杰出讲师。
图书目录译者序
前言
第1章 半导体基础
1.1 半导体的定义
1.2 平衡载流子浓度与本征材料
1.3 杂质半导体材料
思考题
第2章 载流子的运动
2.1 载流子的漂移运动与扩散运动
2.2 产生-复合
2.3 连续性方程及其解
思考题
第3章 结
3.1 处于平衡状态的pn结
3.2 不同偏压下的同质pn结
3.3 理想二极体行为的偏离
3.4 载流子的注入、拉出、电荷控制分析及电容
3.5 肖特基势垒
思考题
第4章 双极结型电晶体
4.1 BJT工作原理
4.2 BJT的二阶效应
4.2.1 基区漂移
4.2.2 基区宽度调制/Early效应
4.2.3 雪崩击穿
4.3 BJT的高频特性
思考题
第5章结型场效应电晶体和金属半导体场效应电晶体
5.1 JFE
(1)硅的主要来源是石英砂(二氧化硅),硅元素和氧元素通过共价键连接在一起。因此需要将氧元素从二氧化硅中分离出来,换句话说就是要将硅还原出来,采用的方法是将二氧化硅和碳元素(可以用煤、焦炭和木屑等)一起在电弧炉中加热至2100°C左右,这时碳就会将硅还原出来。化学反应方程式为:SiO2 (s) + 2C (s) = Si (s) + 2CO (g)(吸热)
(2)
上一步骤中得到的硅中仍有大约2%的杂质,称为冶金级硅,其纯度与半导体工业要求的相差甚远,因此还需要进一步提纯。方法则是在流化床反应器中混合冶金级硅和氯化氢气体,最后得到沸点仅有31°C的三氯化硅。化学反应方程式为:Si (s) + 3HCl (g) = SiHCl3 (g) + H2 (g)(放热)
(3)
随后将三氯化硅和氢气的混合物蒸馏后再和加热到1100°C的硅棒一起通过气相沉积反应炉中,从而除去氢气,同时析出固态的硅,击碎后便成为块状多晶硅。这样就可以得到纯度为99.9999999%的硅,换句话说,也就是平均十亿个硅原子中才有一个杂质原子。
(4)
进行到目前为止,半导体硅晶体对于芯片制造来说还是太小,因此需要把块状多晶硅放入坩埚内加热到1440°C以再次熔化 。为了防止硅在高温下被氧化,坩埚会被抽成真空并注入惰性气体氩气。之后用纯度99.7%的钨丝悬挂硅晶种探入熔融硅中,晶体成长时,以2~20转/分钟的转速及3~10毫米/分钟的速率缓慢从熔液中拉出:
探入晶体“种子”
长出了所谓的“肩部”
长出了所谓的“身体”
这样一段时间之后就会得到一根纯度极高的硅晶棒,理论上最大直径可达45厘米,最大长度为3米。
以上所简述的硅晶棒制造方法被称为切克劳斯法(Czochralski process,也称为柴氏长晶法),此种方法因成本较低而被广泛采用,除此之外,还有V-布里奇曼法(Vertikalern Bridgman process)和浮动区法(floating zone process)都可以用来制造单晶硅。
湿法腐蚀的优点在于可以控制腐蚀液的化学成分,使得腐蚀液对特定薄膜材料的腐蚀速率远远大于其他材料的腐蚀速率,从而提高腐蚀的选择性。但是,由于湿法腐蚀的化学反应是各向同性的,因而位于光刻胶边缘下边的薄膜材料就不可避免的遭到腐蚀,这就使得湿法腐蚀无法满足ULSI工艺对加工精细线条的要求。所以相对于各向同性的湿法腐蚀,各向异性的干法刻蚀就成为了当前集成电路技术中刻蚀工艺的主流。 一、干法刻蚀的原理 干法刻蚀是指利用等离子体激活的化学反应或者是利用高能离子束轰击去除物质的方法。因为在刻蚀中并不使用溶液,所以称之为干法刻蚀。干法刻蚀因其原理不同可分为两种,一种是利用辉光放电产生的活性粒子与需要刻蚀的材料发生化学反应形成挥发性产物完成刻蚀,也称为等离子体刻蚀。第二种是通过高能离子轰击需要刻蚀的材料表面,使材料表面产生损伤并去除损伤的物理过程完成刻蚀,这种刻蚀是通过溅射过程完成的,也称为溅射刻蚀。上述两种方法的结合就产生了第三种刻蚀方法,称为反应离子刻蚀(简称RIE)。 在干法刻蚀中,纵向上的刻蚀速率远大于横向的刻蚀速率。这样,位于光刻胶边缘下边的材料,由于受到光刻胶的保护就不会被刻蚀。不过,在干法刻蚀的过程中,离子会对硅片上的光刻胶和无保护的薄膜同时进行轰击刻蚀,其刻蚀的选择性就比湿法刻蚀差(所谓的选择性是指刻蚀工艺对刻蚀薄膜和其他材料的刻蚀速率的比值,选择性越高,表示刻蚀主要是在需要刻蚀的材料上进行)。 在等离子体中存在有离子、电子和游离基(游离态的原子、分子或原子团)等,这些游离态的原子、分子或原子团等活性粒子,具有很强的化学活性,如果在这种等离子体中放入硅片,位于硅片表面上的薄膜材料原子就会与等离子体中的激发态游离基发生化学反应,生成挥发性的物质,从而使薄膜材料受到刻蚀,这就是等离子体刻蚀的原理和过程。因为等离子体刻蚀主要是通过化学反应完成的,所以具有比较好的选择性,但是各向异性就相对较差。 在溅射刻蚀过程中,等离子体的高能离子射到硅片表面上的薄膜表面时,通过碰撞,高能离子与被碰撞的原子之间就会发生能量和动量的转移,从而使被撞原子受到扰动。如果轰击离子传递给被撞原子的能量比原来的结合能(从几个eV到几十个eV)还要大,就会使被撞原子脱离原来的位置飞溅出来,产生溅射现象。例如,辉光放电中产生的氩离子,其能量高达500eV以上,这种高能离子束轰击硅片上的薄膜表面就会形成溅射刻蚀。溅射刻蚀的优点是各向异性刻蚀,而且效果很好,但是对刻蚀的选择性相对较差。 反应离子刻蚀是一种介于溅射刻蚀与等离子体刻蚀之间的干法刻蚀技术。在反应离子刻蚀中,同时利用了物理溅射和化学反应的刻蚀机制。反应离子刻蚀与溅射刻蚀的主要区别是,反应离子刻蚀使用的不是惰性气体,而是与等离子体刻蚀所使用的气体相同。由于在反应离子刻蚀中化学和物理作用都有助于实现刻蚀,因此就可以灵活的工作条件以求获得最佳的刻蚀效果。举例来说,如果某种气体的等离子体只与Si起化学反应,由于化学反应阻挡层SiO2的存在,就可以得到良好的Si/SiO2刻蚀速率比,从而保证刻蚀选择性的要求。反应离子刻蚀的缺点在于刻蚀重点难以检测。 综上所述,等离子体刻蚀和溅射刻蚀之间并没有明显的界限,一般来说,在刻蚀中物理作用和化学反应都可以发生。我们分析反应离子刻蚀、等离子体刻蚀和溅射刻蚀之间的关系可以看到:在反应离子刻蚀中,物理和化学作用都特别重要;在等离子体刻蚀中,物理效应很弱,主要是化学反应;而在溅射刻蚀中,几乎是纯物理作用。比较这三种刻蚀技术我们还可以发现,它们都是利用低压状态下(约0.01—133Pa)气体放电来形成等离子体作为干法刻蚀的基础,其区别是放电条件、使用气体的类型和所用反应系统的不同。刻蚀反应的模式取决于刻蚀系统的压力、温度、气流、功率和相关的可控参数。目前,在集成电路工艺过程中广泛使用的是反应离子技术。下面简要介绍采用干法刻蚀对集成电路制造中常用材料的刻蚀情况。 二、二氧化硅和硅的干法刻蚀 二氧化硅在集成电路工艺中的应用非常广泛,它可以作为隔离MOSFET的场氧化层,或者是MOSFET的栅氧化层,也可以作为金属间的介电材料,直至作为器件的最后保护层。因此,在集成电路工艺中对SiO2的刻蚀是最为频繁的。在ULSI工艺中对二氧化硅的刻蚀通常是在含有氟化碳的等离子体中进行。早期刻蚀使用的气体为四氟化碳(CF4),现在使用比较广泛的气体主要有CHF3、C2F4、SF4,其目的都是用来提供碳原子核和氟原子与SO2进行反应。以CF4为例,当CF4与高能量电子(约10eV以上)碰撞时,就会产生各种离子、原子团、原子和游离基。其中产生氟游离基和CF3分子的电离反应。氟游离基可以与SiO, 和Si 发生化学反应。反应将生成具挥发性的四氟化硅(SiF4)。 CF4+e——CF3 十F(游离基)+e SiO2+4F——SiF4(气)+02 Si+4F——SiF4(气) 在ULSI工艺中对SiO2 的干法刻蚀主要是用于刻蚀接触窗口,以MOSFET的接触窗口刻蚀为例。在MOSFET的上方覆盖有SiO2 层(通常是硼磷硅玻璃,简称BPSG), 为了实现金属层与 MOSFET的源/漏极之间的接触,需要刻蚀掉位于 MOSFET源/漏极上方的SiO2。为了使金属与 MOSFET源/漏极能够充分接触,源/漏极上方的SiQ2必须彻底清除。但是在使用CF4等离子体对SiO2进行刻蚀时,等离子体在刻蚀完 SiO2之后,会继续对硅进行刻蚀。因此,在刻蚀硅上的二氧化硅时,必须认真考虑刻蚀的选择性问题。 为了解决这一问题,在CF4 等离子体中通常加人一些附加的气体成份,这些附加的气体成份可以影响刻蚀速度、刻蚀的选择性、均匀性和刻蚀后图形边缘的剖面效果。 在使用CF4对硅和二氧化硅进行等离子刻蚀时,如果在CF4的等离子体中加人适量的氧气,氧气也同样被电离。其中,氧原子将与CF4反应生成CO和CO2 , 以及少量的COF2 ,另一方面,氟原子在与SiO2反应的同时,还与CF4原子团(x≤3)结合而消耗掉。在纯CF4等离子体中,由于存在使氟原子消耗的反应,造成氟原子的稳态浓度比较低,所以刻蚀的速度也比较慢。如果加入氧,则氧可与CFx原子团形成COF2 , CO和CO2, 造成CF, 原子团耗尽,从而减少了氟原子的消耗,进而使得CFx等离子体内的氟原子数对碳原子数的比例上升,其结果是氟原子的浓度增加,从而加快SiO2 的刻蚀速度。 对于CF, 刻蚀Si薄膜,也有相同的情况。在CF4刻蚀二氧化硅的过程中,氧的组分大约占20%时刻蚀的速度达到最大值。而使用CF4刻蚀硅,刻蚀速度最大时氧的组分大约占12% 。继续增加氧的组分,刻蚀速度将会下降,而且硅刻蚀速度的下降程度比刻蚀二氧化硅快。对于刻蚀 SiO2而言,氧的组分达到23%之前,刻蚀速度都是增加的,在达到氧组分临界值之后,由于氟原子浓度被氧冲淡,刻蚀速度开始下降。另一方面,由干于反应是在薄膜表面进行的,在刻蚀硅的情况下,氧原子倾向于吸附在Si的表面上,这样就部分地阻挡了氟原子加人反应。随着更多氧的吸附,对Si的刻蚀影响进一步增加。而在刻蚀二氧化硅时就不存在类似的效应。因为等效地看,SiO2的表面一开始就被氧原子所包围。因此,对硅的刻蚀速度最大时,其氧气的组分要小于刻蚀 SiO2的情况。 如果在CF4等离子体中加人氢,情况就会完全不同。在反应离子刻蚀二氧化硅的过程中,在相当低的气压下加大氢的组分,二氧化硅的刻蚀速度随氢的组分的增加而缓慢减小,这种情况可以持续到氢的组分大约占40%.而对于硅的刻蚀来说,刻蚀速度随氢组分的增加快速下降,当氢的组分大于40%时,对Si的刻蚀将停止。在CF4等离子体中加人氢对刻蚀的影响情况。 我们可以通过CF4等离子体刻蚀Si和SiO2的化学反应机制来解释这一现象。在刻蚀Si的过程中,氟原子与氢原子发生反应,从而使氢原子的浓度下降,这样等离子体中碳的含量升高,刻蚀反应就会被生成高分子聚合物的反应所代替,这就减小了对Si的刻蚀速度。另一方面,CFx(x≤3)原子团也可以与Si反应,生成挥发性的 SiF, 但是反应剩余的碳原子会吸附在Si的表面上,这些碳原子就会妨碍后续反应的进行。对于刻蚀SiO2的情况,氟原子也会与氢原子发生反应,氢原子的浓度下降也使SiO2的刻蚀速度减缓。面与刻蚀Si的情况不同的是,在CFx(x≤3)原子团与SiO2反应生成挥发性的SiF4的同时,CFx(X<3)原子团中的碳原子可以与二氧化硅中的氧原子结合,生成CO, CO2以及COF2气体,因此SiO2刻蚀速度的减缓程度要小于刻蚀Si的情况。在氢浓度超过40%以后,由于大量的氟原子与氢反应,CF4等离子体中的碳浓度开始上升,这也会在二氧化硅的表面形成高分个聚合物,从而使SiO2的刻蚀速度下降。 总的来看,在CF4等离子体中添加其他气体成份可影响等离子体内氟原子与碳原予的比例,简称F/C比。如果F/C比比较高(在CF4等离子体中添加氧气), 其影响倾向于加快刻蚀。反之,如果F/C比比较低(在CF4等离子体中添加氢气), 刻蚀过程倾向于形成高分子聚合物薄膜。 根据上述研究,可以通过在CF4等离子体中加人其他气体成份的方法,来解决选择性刻蚀 SiO2/Si的问题。如果CF4等离子体中O2的含量增加,刻蚀 Si 和刻蚀 SiO2的速度都加快,并且Si刻蚀速度的加快程度要大于刻蚀 SiO2的情况。因此,在CF4等离子体中加人O2将导致 SiO2/Si 刻蚀的选择性变差。在CF4等离子体中加人氢气对 SiO2的刻蚀影响不大,但是可以减小对Si的刻蚀速度。这说明在CF4等离子体中加人适量的氢气,将可以加强SiO2/Si刻蚀的选择性。 在当前集成电路工艺的干法刻蚀中,通常使用CHF3等离子体来进行SiO2的刻蚀。有时在刻蚀的过程中还要加人少量的氧气来提高刻蚀的速度。此外,SF6和NF3可以用来做为提供氟原子的气体。因为SF6和NF3中不含碳原子,所以不会在Si的表面形成高分子聚合物薄膜。 三、Si3N4的干法刻蚀 在ULSI工艺中,Si3N4的用途主要有两种:一种是在二氧化硅层上通过LPCVD 淀积Si3N4薄膜,然后经过光刻和干法刻蚀形成图形,做为接下来氧化或扩散的掩蔽层,但是并不成为器件的组成部分。这类Si3N4薄膜可以使用CF4, CF4(加O2, SF6和NF3)的等离子体刻蚀。另一种是通过 PECVD 淀积Si3N4做为器件保护层,这层 Si3N4 在经过光刻和干法刻蚀之后,氮化硅下面的金属化层露了出来,就形成了器件的压焊点,然后就可以进行测试和封装了。对于这种Si3N4薄膜,使用CF4-O2等离子体或其他含有F原子的气体等离子体进行刻蚀就可以满足要求。 实际上用于刻蚀SiO2的方法,都可以用来刻蚀 Si3N4.由于Si-N键的结合能介于Si-0键与 Si-Si键之间,所以氮化硅的刻蚀速度在刻蚀 SiO2和刻蚀Si之间。这样,如果对Si3N4/SiO, 的刻蚀中使用 CF4或是其他含氟原子的气体等离子体,对Si3N4/SiO2的刻蚀选择性将会比较差。如果使用 CHF3等离子体来进行刻蚀,对SiO2/Si的刻蚀选择性可以在10以上,而对Si3N4/Si的选择性则只有3~5左右,对 Si3N4/SiO2的选择性只有2~4左右。 刻蚀速率R是干法刻蚀的主要参数,刻蚀速率低,易于控制,但不适合实际生产要求。对于ULSI制造工艺,要有足够的刻蚀速率,且能重复、稳定的运用于生产中。这一节讨论几个影响刻蚀速率的主要因素。 四、离子能量和入射角 因为溅射刻蚀是利用物理溅射现象来完成的,所以,刻蚀速率由溅射率、离子束人射角和入射流密度决定,溅射率S定义为一个人射离子所能溅射出来的原子数。离子能量达到某一阈值能量以后(大约20 eV), 才能产生溅射,要想得到实用的溅射刻蚀速率,离子能量必须比阙值能量大得多(达几百eV以上)。在刻蚀工艺中离子的能量一般≤2keV, 在这 个能量范围内,大多数材料的溅射率随离子能量的增加单调上升,当离子能量达到一定程度之后,刻蚀速率随能量的增加是缓慢的。对于·ULSI所用的材料,Ar+离子能量为500eV 时,溅射率的典型值为0. 5~1. 5. 离子人射角表示离子射向衬底表面的角度(垂直于表面人射时,), 它是溅射率的敏感函数。当人射角大于零并增大时,衬底原子脱离表面飞出的几率增大,但是当人射角超过某一值时,在表面反射的离子增多,溅射率下降。人射角从零逐渐增加,S值也逐渐增大,在某一角度0-0max时,溅射率达到最大值,随后又逐渐减小,当0=90时,溅射率减小到零,即S=0. 在等离子体刻蚀和反应离子刻蚀中,溅射对刻蚀速率的贡献很小,更重要的是离子与材料表面之间的化学反应。但实验证明,由等离子体产生的中性粒子与固体表面之间的作用将加速反应,这种离子加速反应在许多干法蚀工艺中都起着重要作用。图8. 32是离子加速刻蚀的例子,图中分别给出Ar+和XeF2离子束射向硅表面的情况,每种离子束单独人射时,刻蚀速率都相当低。Ar+离子束是物理溅射刻蚀,XeF2解离为Xe 和两个F原子,然后,F原子自发地和硅反应形成挥发性氟化硅。当450 eV的Ar+离子束和XeF2气体同时人射时,刻蚀速率非常高,大约为两种离子束单独刻蚀速率总和的8倍。 图8. 33 表示的是离子加速反应的另一个例子,图中给出的是有Ar+存在时,CI2与硅的反应。与F原子不同,Cl2不能自发地刻蚀硅,当用450eV的Ar+离子束和Cl2同时射向表面时,硅被刻蚀,而且刻蚀速率比 Ar +溅射的刻蚀速率高得多。由图中可以看到,约轰击220秒时加人CI2气,刻蚀速率发生跃变,这是由于大量氯的存在所引起的。有几种可以解释离子加速反应的机理。① 离子轰击将在衬底表面产生损伤或缺陷,加速了化学反应过程;②离子轰击可直接离解反应剂分子(例如XeF2或Cl2)③离子轰击可以清除表面不挥发的残余物质。对这些机理及它们的相对重要性的研究仍旧是一个重要课题,并有所争论。 在上述的第一种情况中(XeF2十Si), 没有离子轰击时,离解的F原子可自发地刻蚀硅,但刻蚀速率低,在高能离子轰击下,提高了总刻蚀速率;在第二种情况下,没有高能离子轰击,(Cl2+Si)是不发生反应的。我们称前者为离子增强刻蚀;后一种情况称为离子感应刻蚀。 这两个例子说明,离子束刻蚀情况是与物过程有关的,并不是惰性气体离子的化学反应的贡献。在(XeF2十Si)和(Cl2+Si)的加速反应中,若离子能量为1keV时,Ar+, Ne+和He+离子的加速作用依次为Ar+>Ne+>He+。大量的研究结果表明,这些离子的加速作用与动量转移有关。但是,在CF4及其有关气体的等离子体刻蚀中,情况又不一样,这里离子本身就含有反应剂(例如CF3+)。在用XeF2刻蚀Si,并同时进行离子轰击的情况下,若用CF3+代替Ar+进行轰击,其刻蚀速率基本上不发生变化。因此,高能离子通过物理过程可以增强反应过程,与离子的化学反应无关。 对于反应离子刻蚀,等离子体中产生的主要是中性反应物,这些中性反应物先吸附于固体表面,再与表面原子反应,形成的反应物再解析成挥发性物质,整个反应可有等离子体中的高能离子诱发并加速。当然,高能离子提高反应速率的程度取决于所用的气体,材料和工艺参数的选取。 五、气体成份气体成份在等离子体刻蚀或反应离子到蚀中是影响刻蚀速率和选择性的关键因素,表8、1是VLSI制造中常用材料的一些代表性刻蚀气体。由表8.1可见,除了去除光削胶和刻蚀有机质之外,VLSI中主要使用卤素气体。选择气体的主要依据是,在等离子刻蚀温度(室温附近)下,它们是否能和剥蚀材料形成挥发性或准挥发性卤化物,由于含卤气体能相当容易地剂蚀VLSI所用的无机材料,而且工艺危害也很小,所以,卤化毒气体占有主要优势。 在反应刻蚀中,经常使用的是含多种成份的混合气体,这些混合气体由一种主要气体加入一种或几种添加剂组成,添加剂的作用是改善刻蚀速率、选择性、均匀性和刻蚀剖面。例如,在刻蚀Si和SiO2时,使用CF4为主的混合气体, 六、气体流速 气体流速决定反应剂的有效供给程度。反应剂的实际需要取决于有效反应物质产生与消耗之间的平衡过程,刻蚀剂损失的主要机制是漂移、扩散、复合以及附着和输运。 在一般工作条件中,气体流速射到蚀邃率R的影响不大,在极端情况下,可以观察到气体液邃的影响,例如,诙邃很小,刻蚀速率受反应剂供给量的限制1相反,当流邃很大时,输运成为反应剂损失的主要原因。是否发生输出损失取决于泵速、气体和反应器内的材料,在一般情况下,活性反应剂的寿命根短,流速的影响不必考虑}当活性剂的寿命较长(例如F原子)时,流速对刻蚀速率R产生影响,由图8.34可见,R-1是流速的线性函数,这与反应剂滞留时间与流速的关系一致,说明在所示的条件下,活性剂的寿命由输运损失决定。 七、温度在反应剥蚀中,M度对刻蚀速率的影响主要是通过化学反应j直率体现的。为获得均匀、重复的刻蚀速率,必须认真控制衬底温度,等离子体加热是衬底温度上升的主要原因;此外,刻蚀过程的放热效应也不可忽视。 八、压力、功率密度和频率 压力、功率密度和频率都是独立的工艺参数,但在实际中,它们各自对刻蚀工艺的影响是难以预计的。压力和频率较低,而功率密度较高,可以提高电子能量和人射离子的能量,增加功率也可提高等离子体中活性剂和离子的密度。因此,在离子加速反应刻蚀中,降低压力或频率,或增加功率密度,可以获得更好的各向异性刻蚀。 一般刻蚀速率单调地随功率而增加。由于外加功率几乎都要转变为热量,因此,在功率密度板高时,样品温度升高,需要考虑衬底散热,否则,会造成有害的影响。 系统压力对到蚀速率的影响,随刻蚀材料及气体的不同而有明显的差异。随着系统压力増加,刻蚀速率增大,选择合适的刻蚀条件可以获得最大的刻恤速率。 频率主要是通过离子能量面影响到蚀速率。放电的工作电压障频率的降低而增加,因而离子的轰击能量在低频下将比高频下的高,又因为刻蚀速率与您轰击能量成正比,所以,在低频下能获得比较高的划蚀速率。 九、负载效应 在反应刻蚀的过程中,刻蚀的速率往往隲刻蚀面积的增大而减小,这种现象称为负载效应。当反应剂与剥蚀材料的反应迅速时,容易产生负戦效应。如果刻蚀是反应剂的主要损失机制,则刻蚀材料的表面积越大,反应剂的消耗速率就越快。活性物质的产生率由工艺参数(例如压力、功率、频率等)决定,与到蚀材料的多少无关、这样,反应刑的平衡浓度可由产生率和损失率之差决定,在反应离子刻蚀的过程中,刻蚀速率只与被刻蚀的面积成反比,刻蚀的速率R随被刻蚀的面积的増大而减小。这说明在一次刻蚀的过程中,需要刻蚀的硅片数目越多,由于反应原子和原子团的消耗,整体的刻蚀速率就越慢。若等离子体中反应刑的寿命很短,负载效应很小就可以忽略,反应剂的损失机构主要由刻蚀消耗所决定。 在集成电路工艺中,负载效应的出现,将影响图形尺寸的精确控制,因为,随着刻蚀到达终点,被腐材料的表面积迅速减小,此时的刻蚀速率就会比正常划蚀速率高得多,不但进行过刻蚀,而且也加速了倒向刻蚀,给条宽的控制造成困难。 从某种意义上说,负载效应是一种宏观过程,反应室中某个硅片的存在将影响另一硅片的刻蚀速率,这就意味着等离子体中反应剂的输运过程非常迅速,以致等离子体中的反应剂并不存在多大的浓度梯度。当然,被多打虫图形的尺寸和密度不同,也会影响刻蚀速率,这可能是由于反应速率不同,引起反应剂的局部浓度梯度而造成的。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)