为了保证半导体制冷片正常工作,在利用半导体制冷片冷端制冷的同时需要在热端进行有效的散热,需要散去的热量包含帕涅尔效应释放的热量和制冷片本身的焦耳热。这个热量远比冷端的吸热量大。所以其实半导体制冷片的效率是非常低的,制冷时消耗的能量远大于制冷量。
而且,对半导体制冷片热端的散热一般要采用主动散热,主动散热装置也是要消耗电的,导致整个半导体制冷模型的制冷效率(制冷量/消耗的电能)是很低很低的。
所以把半导体制冷片用在空调这种大功率的制冷应用是灰常不经济的,前提还要能找到一种体积不至于太大并且在制冷片堆的热端能对空调制冷功率的一倍都不止的热量进行有效散热的装置。
扩展资料:
半导体制冷片的优点和特点
制冷片作为特种冷源,在技术应用上具有以下的优点和特点:
1、不需要任何制冷剂,可连续工作,没有污染源没有旋转部件,不会产生回转效应,没有滑动部件是一种固体片件,工作时没有震动、噪音、寿命长,安装容易。
2、半导体制冷片具有两种功能,既能制冷,又能加热,制冷效率一般不高,但制热效率很高,永远大于1。因此使用一个片件就可以代替分立的加热系统和制冷系统。
3、半导体制冷片是电流换能型片件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。
4、半导体制冷片热惯性非常小,制冷制热时间很快,在热端散热良好冷端空载的情况下,通电不到一分钟,制冷片就能达到最大温差。
5、半导体制冷片的反向使用就是温差发电,半导体制冷片一般适用于中低温区发电。
6、半导体制冷片的单个制冷元件对的功率很小,但组合成电堆,用同类型的电堆串、并联的方法组合成制冷系统的话,功率就可以做的很大,因此制冷功率可以做到几毫瓦到上万瓦的范围。
7、半导体制冷片的温差范围,从正温90℃到负温度130℃都可以实现。
兄弟这个问题问得很大,要是从理论上解释在百度知道里面是不行的,打公式费劲着呢.我简单给你说说吧~更深一步的探讨你可以给我邮件xinhu12@163.com,这样我可以发给一个我做的文档,里面就你这个问题我详细作答.兄弟之所以有这样的疑问的原因应该是:禁带宽度小,吸收光子多,产生的电子空穴对多,电池的效率就高,貌似这样分析很正确,其实则不然.要提高太阳能电池的效率要拓宽吸收光谱,没错,要产生更多的载流子也没有错.但是只是简单的拓宽光谱而不考虑光谱匹配,只是为了更多的产生载流子而不考虑载流子输运,这就有所偏废了,或者说你思维产生了片面性,进入了极端.打个比方你现在就是食堂老板,想多挣钱,你只有两个办法:1)减少原材料成本 2)吸引更多的人来买饭.你现在的想法是我把原材料的成本降低最低,这样我挣钱不就多了吗?但是一旦你的原材料成本降低过度,你的饭菜是不可能卖出去的.做电池也是一样,你不能只考虑优化某一点,偏废另一点,而是要在原材料成本和买饭人数之间去一个平衡,使效率达到最大化!你用禁带宽度极小的半导体材做成电池后,首先面临的问题就是两种半导体材料的接触电池差(也就是空间电势)极小,这样即使半导体材料能够较大的吸收光子,产生较多的电子空穴对,但是由于空间电势较小,不能驱动电子和空穴对尽快的转移到电池的两端,载流子很快就会被复合掉.这样产生的载流子再多也没用,因为它没有进入外电路驱动负载,对外电路不做功.所以这样看来只有被电池两极所收集的载流子才是真正的有意义、有效的载流子.另外,你知道光生电压约等于空间电势的一半,空间电势小,那光生电压更不用说了,这样的电池有意义吗?我的需要多少块才能驱动一个负载?我的需要多大面积的电池才能驱动一个负载?我的需要多少成本才能驱动负载?再跟兄弟说明下,兄弟的数学没有学好,即使以上分析我们都不知道,我们也可以判断出来,禁带宽度过窄的材料不适合做太阳能电池.为什么这样说呢?衡量太阳能电池的主要标志之一就是其光电转换效率(英文简写为PCE),顾名思义PCE=电能/光能,我们考虑一个能量hv的光子(hv>Eg),窄禁带宽度意味着Eg很小,也就是说hv-Eg>>0.实际上半导体材料吸收光子仅仅吸收了Eg的能,也就是说转换为电能的最大能量也就是Eg了,其他绝大部分能量(hv-Eg)都转换为晶格热了,这一部分能量不能转换为电能,只能以晶格震动的形式表现出来.这样你看看PCE的表达式,你是不是会发现Eg过小不是什么好事了吧!我们想获得较高的效率不单单要拓宽光谱吸收,更要注意光谱匹配,这就要求hv-Eg≈0越好,PCE才能趋近于100%.
不知道这样分析兄弟能否看懂,如果感觉我回到的可以请赶快给分,
III-V族半导体器件性能高,主要还是说III-V族半导体材料用做发光器件、功率器件或微波射频器件时,发光效率高,反向耐压高或导通电阻低吧?而集成电路不需要发光,所以光效高用不上;集成电路比如CPU工作电压才1V,III-V族器件动辄几百伏上千伏的耐压不需要;而集成电路的基本单元是NMOS和PMOS构成的CMOS电路,在工作的时候只有电位改变,器件根本不导通,所以导通电阻低也没啥用。综上,III-V族半导体材料用到集成电路里和硅相比没啥特别优势吧?其次,硅可以说是神赐予人类的材料,有非常多优良性质,也只有硅单晶的这些性质,才能够使大规模集成电路成为可能。
1.硅可使用熔融法拉单晶,单晶尺寸很容易做大,并且制备的硅晶圆纯度极高,位错密度极低。
硅单晶纯度99.999999999%(11个9,11N),GaN单晶纯度7N
硅单晶穿线位错是个位数量级,甚至有无位错硅单晶,而GaN单晶穿线位错密度在每平方厘米百万量级
硅可以做到12寸晶圆,GaN单晶只有4寸
并且因为GaN无法使用熔融法拉单晶,制造成本很高,6寸硅晶圆150元/片,2寸氮化镓晶圆1万元/片
2.硅可以通过热氧化制出厚度极均匀,密度极高的二氧化硅绝缘膜。
集成电路的基元是MOSFET,这种器件的栅极控制器件通断,金属和半导体之间需要一层氧化物形成特殊的能带结构,以便于用栅极电压控制源漏电路的通断
而集成电路规模越大,器件尺寸越小,需要的栅极氧化物也越薄,这个时候栅极氧化物的均匀性就非常重要
通过控制硅晶圆表面温度均匀性,可以在12寸硅晶圆表面通过高温热氧化形成厚度均匀性在纳米量级的二氧化硅层,使大规模集成电路成为可能。可以做一个类比,如果硅晶圆面积和地球表面积一样大,那么就相当于在地球表面形成一层厚度均匀性在1m以内的土墙,这样一想是不是觉得蛮不可思议的
当然现在有了原子层沉积技术,对于III-V族氮化物形成均匀膜层也并非不可能,但是膜层密度和制造成本相较硅还是高很多
3.在地球上硅储量及其丰富,价格及其便宜。
地壳中的元素含量依次是氧,硅,铝。。。
硅元素含量排第二位,比如沙子基本就是二氧化硅,而硅晶圆的原材料其实就是沙子
Ga这种元素就少多了,而且开采很不容易,一般都是铝矿的伴生矿,现在1kg大概3000元的样子,想想1kg沙子多少钱,就知道如果CPU变成GaN做的你还有没有可能用得起了。。
最后,我要说明一下,虽然有上述问题,让III-V族材料难以广泛应用于大规模集成电路,但是并不是说III-V族半导体材料就完全没机会。
III-V族半导体材料可以制备高性能光电、功率和微波射频器件,控制这些器件的电路如果用硅集成电路来做,需要用bonding做电链接,难以小型化,还会有其他一些问题
如果能直接使用III-V族半导体材料做逻辑电路,哪怕关键尺寸(CD)不像硅那么小(就是平时说的14nm制程,GaN一般在1μm,也就是说同样面积可以放100个硅MOS,只能放1个GaN器件),成本高一点,也不是不能接受,所以一直有人在往这个方向努力
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)