【简介】也叫 三极管 sān jí ɡuǎn 晶体管(transistor)是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。晶体管作为一种可变开关,基于输入的电压,控制流出的电流,因此晶体管可做为电流的开关,和一般机械开关(如Relay、switch)不同处在于晶体管是利用电讯号来控制,而且开关速度可以非常之快,在实验室中的切换速度可达100GHz以上。
半导体三极管,是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。输入级和输出级都采用晶体管的逻辑电路,叫做晶体管-晶体管逻辑电路,书刊和实用中都简称为TTL电路,它属于半导体集成电路的一种,其中用得最普遍的是TTL与非门。TTL与非门是将若干个晶体管和电阻元件组成的电路系统集中制造在一块很小的硅片上,封装成一个独立的元件。半导体三极管[font color=#000000]是电路中[/font]应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。
半导体三极管主要分为两大类:双极性晶体管(BJT)和场效应晶体管(FET)。晶体管有三个极;双极性晶体管的三个极,分别由N型跟P型组成发射极(Emitter)、基极 (Base) 和集电极(Collector);场效应晶体管的三个极,分别是源极 (Source)、栅极(Gate)和漏极(Drain)。晶体管因为有三种极性,所以也有三种的使用方式,分别是发射极接地(又称共射放大、CE组态)、基极接地(又称路最常用的用途应该是属于讯号放大这一方面,其次是阻抗匹配、讯号转换……等,晶体管在电路中是个很重要的组件,许多精密的组件主要都是由晶体管制成的。
三极管的导通 三极管处于放大状态还是开关状态要看给三极管基极加的直流偏置,随这个电流变化,三极管工作状态由截止-线性区-饱和状态变化而变, 如果三极管Ib(直流偏置点)一定时,三极管工作在线性区,此时Ic电流的变化只随着Ib的交流信号变化,Ib继续升高,三极管进入饱和状态,此时三极管的Ic不再变化,三极管将工作在开关状态。
三极管为开关管使用时工作在饱和状态1,用放大状态1表示不是很科学。
请对照三极管手册的Ib;Ic曲线加以参考我的回答来理解三极管的工作状态,三极管be结和ce结导通三极管才能正常工作。
如果三极管没有加直流偏置时,放大电路时输入的交流正弦信号正半周时,基极对发射极而言是正的,由于发射结加的是反向电压,此时没有基极电流和集电极电流,此时集电极电流变化与基极反相,在输入电压的负半周,发射极电位对于基极电位为正的,此时由于发射极加的是正向电压,才有基极和集电极电流通过,此时集电极电流变化与基极同相, 在三极管没有加直流偏置时三极管be结和ce结导通,三极管放大电路将只有半个波输出将产生严重的失真。
晶体管被认为是现代历史中最伟大的发明之一,在重要性方面可以与印刷术,汽车和电话等发明相提并论。晶体管实际上是所有现代电器的关键活动(active)元件。晶体管在当今社会的重要性,主要是因为晶体管可以使用高度自动化的过程,进行大规模生产的能力,因而可以不可思议地达到极低的单位成本。
虽然数以百万计的单体晶体管还在使用,但是绝大多数的晶体管是和电阻、电容一起被装配在微芯片(芯片)上以制造完整的电路。模拟的或数字的或者这两者被集成在同一块芯片上。设计和开发一个复杂芯片的成本是相当高的,但是当分摊到通常百万个生产单位上,每个芯片的价格就是最小的。一个逻辑门包含20个晶体管,而2005年一个高级的微处理器使用的晶体管数量达2.89亿个。
晶体管的低成本、灵活性和可靠性使得其成为非机械任务的通用器件,例如数字计算。在控制电器和机械方面,晶体管电路也正在取代电机设备,因为它通常是更便宜、更有效地,仅仅使用标准集成电路并编写计算机程序来完成同样的机械任务,使用电子控制,而不是设计一个等效的机械控制。
因为晶体管的低成本和后来的电子计算机、数字化信息的浪潮来到了。由于计算机提供快速的查找、分类和处理数字信息的能力,在信息数字化方面投入了越来越多的精力。今天的许多媒体是通过电子形式发布的,最终通过计算机转化和呈现为模拟形式。受到数字化革命影响的领域包括电视、广播和报纸。
【晶体管分类】
按半导体材料和极性分类
按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管。按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。
按结构及制造工艺分类
晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。
按电流容量分类
晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。
按工作频率分类
晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。
按封装结构分类
晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。其封装外形多种多样。
按功能和用途分类
晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。
※ 电力晶体管
电力晶体管按英文Giant Transistor直译为巨型晶体管,是一种耐高电压、大电流的双极结型晶体管(Bipolar Junction Transistor—BJT),所以有时也称为Power BJT;其特性有:耐压高,电流大,开关特性好,但驱动电路复杂,驱动功率大;GTR和普通双极结型晶体管的工作原理是一样的。
※ 光晶体管
光晶体管(phototransistor)由双极型晶体管或场效应晶体管等三端器件构成的光电器件。光在这类器件的有源区内被吸收,产生光生载流子,通过内部电放大机构,产生光电流增益。光晶体管三端工作,故容易实现电控或电同步。光晶体管所用材料通常是砷化镓(CaAs),主要分为双极型光晶体管、场效应光晶体管及其相关器件。双极型光晶体管通常增益很高,但速度不太快,对于GaAs-GaAlAs,放大系数可大于1000,响应时间大于纳秒,常用于光探测器,也可用于光放大。场效应光晶体管响应速度快(约为50皮秒),但缺点是光敏面积小,增益小(放大系数可大于10),常用作极高速光探测器。与此相关还有许多其他平面型光电器件,其特点均是速度快(响应时间几十皮秒)、适于集成。这类器件可望在光电集成中得到应用。
※ 双极晶体管
双极晶体管(bipolar transistor)指在音频电路中使用得非常普遍的一种晶体管。双极则源于电流系在两种半导体材料中流过的关系。双极晶体管根据工作电压的极性而可分为NPN型或PNP型。
※ 双极结型晶体管 双极结型晶体管(Bipolar Junction Transistor—BJT)又称为半导体三极管,它是通过一定的工艺将两个PN结结合在一起的器件,有PNP和NPN两种组合结构;外部引出三个极:集电极,发射极和基极,集电极从集电区引出,发射极从发射区引出,基极从基区引出(基区在中间);BJT有放大作用,重要依靠它的发射极电流能够通过基区传输到达集电区而实现的,为了保证这一传输过程,一方面要满足内部条件,即要求发射区杂质浓度要远大于基区杂质浓度,同时基区厚度要很小,另一方面要满足外部条件,即发射结要正向偏置(加正向电压)、集电结要反偏置;BJT种类很多,按照频率分,有高频管,低频管,按照功率分,有小、中、大功率管,按照半导体材料分,有硅管和锗管等;其构成的放大电路形式有:共发射极、共基极和共集电极放大电路。
※ 场效应晶体管
场效应晶体管(field effect transistor)利用场效应原理工作的晶体管。英文简称FET。场效应就是改变外加垂直于半导体表面上电场的方向或大小,以控制半导体导电层(沟道)中多数载流子的密度或类型。它是由电压调制沟道中的电流,其工作电流是由半导体中的多数载流子输运。这类只有一种极性载流子参加导电的晶体管又称单极型晶体管。与双极型晶体管相比,场效应晶体管具有输入阻抗高、噪声小、极限频率高、功耗小,制造工艺简单、温度特性好等特点,广泛应用于各种放大电路、数字电路和微波电路等。以硅材料为基础的金属�氧化物�半导体场效应管(MOSFET)和以砷化镓材料为基础的肖特基势垒栅场效应管(MESFET)是两种最重要的场效应晶体管,分别为MOS大规模集成电路和MES超高速集成电路的基础器件。
※ 静电感应晶体管
静电感应晶体管SIT(Static Induction Transistor)诞生于1970年,实际上是一种结型场效应晶体管。将用于信息处理的小功率SIT器件的横向导电结构改为垂直导电结构,即可制成大功率的SIT器件。SIT是一种多子导电的器件,其工作频率与电力MOSFET相当,甚至超过电力MOSFET,而功率容量也比电力MOSFET大,因而适用于高频大功率场合,目前已在雷达通信设备、超声波功率放大、脉冲功率放大和高频感应加热等某些专业领域获得了较多的应用。
但是SIT在栅极不加任何信号时是导通的,栅极加负偏压时关断,这被称为正常导通型器件,使用不太方便。此外,SIT通态电阻较大,使得通态损耗也大,因而SIT还未在大多数电力电子设备中得到广泛应用。
※ 单电子晶体管
用一个或者少量电子就能记录信号的晶体管。随着半导体刻蚀技术和工艺的发展,大规模集成电路的集成度越来越高。以动态随机存储器(DRAM)为例,它的集成度差不多以每两年增加四倍的速度发展,预计单电子晶体管将是最终的目标。目前一般的存储器每个存储元包含了20万个电子,而单电子晶体管每个存储元只包含了一个或少量电子,因此它将大大降低功耗,提高集成电路的集成度。1989年斯各特(J.H. F.Scott-Thomas)等人在实验上发现了库仑阻塞现象。在调制掺杂异质结界面形成的二维电子气上面,制作一个面积很小的金属电极,使得在二维电子气中形成一个量子点,它只能容纳少量的电子,也就是它的电容很小,小于一个?F (10~15法拉)。当外加电压时,如果电压变化引起量子点中电荷变化量不到一个电子的电荷,则将没有电流通过。直到电压增大到能引起一个电子电荷的变化时,才有电流通过。因此电流-电压关系不是通常的直线关系,而是台阶形的。这个实验在历史上第一次实现了用人工控制一个电子的运动,为制造单电子晶体管提供了实验依据。为了提高单电子晶体管的工作温度,必须使量子点的尺寸小于10纳米,目前世界各实验室都在想各种办法解决这个问题。有些实验室宣称已制出室温下工作的单电子晶体管,观察到由电子输运形成的台阶型电流——电压曲线,但离实用还有相当的距离。
※ 绝缘栅双极晶体管
绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)综合了电力晶体管(Giant Transistor—GTR)和电力场效应晶体管(Power MOSFET)的优点,具有良好的特性,应用领域很广泛;IGBT也是三端器件:栅极,集电极和发射极。
【主要参数】
晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。
※ 电流放大系数
电流放大系数也称电流放大倍数,用来表示晶体管放大能力。
根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。
1.直流电流放大系数 直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。
2.交流电流放大系数 交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。
hFE或β既有区别又关系密切,两个参数值在低频时较接近,在高频时有一些差异。
※ 耗散功率
耗散功率也称集电极最大允许耗散功率PCM,是指晶体管参数变化不超过规定允许值时的最大集电极耗散功率。
耗散功率与晶体管的最高允许结温和集电极最大电流有密切关系。晶体管在使用时,其实际功耗不允许超过PCM值,否则会造成晶体管因过载而损坏。
通常将耗散功率PCM小于1W的晶体管称为小功率晶体管,PCM等于或大于1W、小于5W的晶体管被称为中功率晶体管,将PCM等于或大于5W的晶体管称为大功率晶体管。
※ 频率特性
晶体管的电流放大系数与工作频率有关。若晶体管超过了其工作频率范围,则会出现放大能力减弱甚至失去放大作用。
晶体管的频率特性参数主要包括特征频率fT和最高振荡频率fM等。
1.特征频率fT 晶体管的工作频率超过截止频率fβ或fα时,其电流放大系数β值将随着频率的升高而下降。特征频率是指β值降为1时晶体管的工作频率。
通常将特征频率fT小于或等于3MHZ的晶体管称为低频管,将fT大于或等于30MHZ的晶体管称为高频管,将fT大于3MHZ、小于30MHZ的晶体管称为中频管。
2.最高振荡频率fM 最高振荡频率是指晶体管的功率增益降为1时所对应的频率。
通常,高频晶体管的最高振荡频率低于共基极截止频率fα,而特征频率fT则高于共基极截止频率fα、低于共集电极截止频率fβ。
集电极最大电流ICM
集电极最大电流是指晶体管集电极所允许通过的最大电流。当晶体管的集电极电流IC超过ICM时,晶体管的β值等参数将发生明显变化,影响其正常工作,甚至还会损坏。
最大反向电压
最大反向电压是指晶体管在工作时所允许施加的最高工作电压。它包括集电极—发射极反向击穿电压、集电极—基极反向击穿电压和发射极—基极反向击穿电压。
1.集电极——发射极反向击穿电压 该电压是指当晶体管基极开路时,其集电极与发射极之间的最大允许反向电压,一般用VCEO或BVCEO表示。
2.集电极——基极反向击穿电压 该电压是指当晶体管发射极开路时,其集电极与基极之间的最大允许反向电压,用VCBO或BVCBO表示。
3.发射极——基极反向击穿电压 该电压是指当晶体管的集电极开路时,其发射极与基极与之间的最大允许反向电压,用VEBO或BVEBO表示。
※ 反向电流
晶体管的反向电流包括其集电极—基极之间的反向电流ICBO和集电极—发射极之间的反向击穿电流ICEO。
1.集电极——基极之间的反向电流ICBO ICBO也称集电结反向漏电电流,是指当晶体管的发射极开路时,集电极与基极之间的反向电流。ICBO对温度较敏感,该值越小,说明晶体管的温度特性越好。
2.集电极——发射极之间的反向击穿电流ICEO ICEO是指当晶体管的基极开路时,其集电极与发射极之间的反向漏电电流,也称穿透电流。此电流值越小,说明晶体管的性能越好。
一.实验目的1.对晶体三极管(3DG6、9013)、场效应管(3DJ6G)进行实物识别,了解它们的命名方法和主要技术指标。2.学习用数字万用表、模拟万用表对三极管进行测试的方法。3.用图3-10提供的电路,对三极管的β值进行测试。4.学习共射、共集电极(*)、共基极放大电路静态工作点的测量与调整,以及参数选取方法,研究静态工作点对放大电路动态性能的影响。5.学习放大电路动态参数(电压放大倍数、输入电阻、输出电阻、最大不失真输出电压)的测量方法。6.调节CE电路相关参数,用示波器观测输出波形,对饱和失真和截止失真的情况进行研究。7.用Multisim软件完成对共射极、共集电极、共基极放大电路性能的分析,学习放大电路静态工作点的测试及调整方法,观察测定电路参数变化对放大电路的静态工作点、电压放大倍数及输出电压波形的影响。加深对共射极、共集电极、共基极基本放大电路放大特性的理解。二.知识要点1.半导体三极管半导体三极管是组成放大电路的核心器件,是集成电路的组成元件,在电路中主要用于电流放大、开关控制或与其他元器件组成特殊电路等。半导体三极管的种类较多,按制造材料不同有硅管、锗管、砷化镓管、磷化镓管等;按极性不同有NPN型和PNP型;按工作频率不同有低频管、高频管及超高频管等;按用途不同有普通管、高频管、开关管、复合管等。其功耗大于1W的属于大功率管,小于1W的属于小功率管。半导体三极管的参数主要有电流放大倍数β、极间反向电流ICEO、极限参数(如最高工作电压VCEM、集电极最大工作电流ICM、最高结温TjM、集电极最大功耗PCM)以及频率特性参数等。有关三极管命名、类型以及参数等可查阅相关器件手册。下面给出几种常用三极管的参数举例如表3-01所示:表3-01几种常用三极管的参数参数PCM(mW)ICM(mA)VBRCBO(V)ICBO(μAhFEfT(MHz)极性3DG100D1002040140.01NPN3DG200A10020150.125~2700.01NPNCS9013H400500250.5144150NPNCS9012H600500250.5144150PNP参数VP(V)IDSSgm(mA/V)PDM(mW)rGS(Ω)fM3DJ6G-93~6.5110010830N沟道2.半导体三极管的识别与检测半导体三极管的类型有NPN型和PNP型两种。可根据管子外壳标注的型号来判别是NPN型,还是PNP型。在半导体三极管型号命名中,第二部分字母A、C表示PNP型管;B、D表示NPN型管;而A、B表示锗材料;C、D表示硅材料。另外,目前市场上广泛使用的9011~9018系列高频小功率9012、9015为PNP型,其余为NPN型。半导体三极管的型号和命名方法,与半导体二极管的型号及命名方法相同,详见康华光第四版P44页附录或者参考有关手册。(1)三极管的电极和类型判别1)直观辨识法。半导体三极管有基极(B)、集电极(C)和发射极(E)三个电极,如图3-11所示,常用三极管电极排列有E-B-C、B-C-E、C-B-E、E-C-B等多种形式。2)特征辨识法。如图3-01所示,有些三极管用结构特征标识来表示某一电极。如高频小功率管3DGl2、3DG6的外壳有一小凸起标识,该凸起标识旁引脚为发射极;金属封装低频大功率管3DD301、3AD6C的外壳为集电极等。图3-11三极管结构特征标识极性3)万用表欧姆档判别法如图3-12所示,选用指针式万用表欧姆档R×lkΩ档。首先判定基极b方法:用万用表黑表笔碰触某一极,再用红表笔依次碰触另外两个电极,并测得两电极间阻值。若两次测得电阻均很小(为PN结正向电阻值),则黑表笔对应为基极且此管为NPN型;或者两次测得电阻值均很大(为PN结反向电阻值),但交换表笔后再用黑笔去碰触另两极,也测量两次,若两次阻值也很小,则原黑表笔对应为管子基极,且此管为PNP型。注意:指针式万用表欧姆档时,黑表笔则为正极,红表笔为负极;这与(a)(b)数字式万用表不同。图3-12万用表欧姆档判别法其次,判别集电极和发射极。其基本原理是把三极管接成基本放大电路,利用测量管子的电流放大倍数值β的大小,来判定集电极和发射极。以NPN管为例说明,如图3-12b所示,基极确定后,不管基极,用万用表两表笔分别接另两电极,用100kΩ的电阻一端接基极,电阻的另一端接万用表黑表笔,若表针偏转角度较大,则黑表笔对应为集电极,红表笔对应为发射极。也可用手捏住基极与黑表笔(但不能使两者相碰),以人体电阻代替l00kΩ电阻的作用(对于PNP型,手捏红表笔与基极)。上面这种方法,实质上是把三极管接成了正向偏置状态,若极性正确,则集电极有较大电流。(2)硅管、锗管的判别根据硅材料PN结正向电阻较锗材料大的特点,可用万用表欧姆R×1kΩ档测定,若测得PN结正向阻值约为3~l0kΩ,则为硅材料管;若测得正向阻值约为50~1kΩ,则为锗材料管。或测量发射结(集电结)反向电阻值,若测得反向阻值约为500kΩ,则为硅材料管;若测得反向阻值约为100kΩ,则为锗材料管。3.三极管场效应管放大电路共射极放大电路既有电流放大作用,又有电压放大作用,故常用于小信号的放大。改变电路的静态工作点,可调节电路的电压放大倍数。而电路工作点的调整,主要是通过改变电路参数(Rb、Rc)来实现。(负载电阻RL的变化不影响电路的静态工作点,只改变电路的电压放大倍数。)该电路信号从基极输入,从集电极输出。输入电阻与相同材料的二极管正向偏置电阻相当,输出电阻较高,适用于多级放大电路的中间级。共集电极放大电路信号由晶体管基极输入,发射极输出。由于其电压放大倍数Av接近于l,输出电压具有随输入电压变化的特性,故又称为射极跟随器。该电路输入电阻高,输出电阻低,适用于多级放大电路的输入级、输出级,还可以作为中间阻抗变换级。共基极放大电路信号由晶体管发射极输入,集电极输出。其电流放大倍数Ai接近于1但恒小于1,(又叫电流跟随器),电压放大倍数Av共射极放大器相同,且输入电压与输出电压同相。其输入电阻低,只有共射放大电路的l/(1+β)倍,输出电阻高,输入端与输出端之间没有密勒电容,电路频率特性好,适用于宽带放大电路。下面以图3-13基本共射放大电路为例进行说明。(1)放大电路静态工作点的测量和调试由于电子元件性能的分散性很大,在制作晶体三极管放大电路时,离不开测量和调试技术。在完成设计和装配之后,还必须测量和调试放大电路的静态工作点及各项指标。一个优质的放大电路,一个最终的产品,一定是理论计算与实验调试相结合的产物。因此,除了熟悉放大电路的理论设计外,还必须掌握必要的测量和调试技术。放大电路的测量和调试主要包括放大电路静态工作点的测量和调试、放大电路图3-13基本共射放大电路(固定偏置式)各项动态指标的测量和调试、消除放大电路的干扰和自激等。在进行测试之前,务必先检查三极管的好坏,并确定具体的β值。1)静态工作点Q的测量放大电路静态工作点的测量是在不加输入信号(即VI=0)的情况下进行的。静态工作点的测量是指三极管直流电压VBEQ、VCEQ和电流ICQ的测量。应选用合适的直流电压表和直流毫安表,分别测量三极管直流电压VBEQ、VCEQ和ICQ。为了避免更改接线,采用电压测量法来换算电流。例如,只要测出实际的Rb、RC的阻值,即可由;;(或)提示:在测量各电极的电位时最好选用内阻较高的万用表,否则必须考虑到万用表内阻对被测电路的影响。2)静态工作点的调整测量静态工作点ICQ和VCEQ的目的是了解静态工作点的设置是否合适。若测出VCEQ<0.5V,则说明三极管已进入饱和状态;如果VCE≈VCC,则说明三极管工作在截止状态。对于一个放大双极性信号(交流信号)的放大电路来说,这两种情况下的静态偏置都不能使电路正常工作,需要对静态工作点进行调整。如果是出现测量值与选定的静态工作点不一致,也需要对静态工作点进行调整。否则,放大后的信号将出现严重的非线性失真和错误。通常,VCC、Rc都已事先选定,当需要调整工作点时,一般都是通过改变偏置电阻Rb来实现。应当注意的是.如果偏置电阻Rb选用的是电位器,在调整静态工作点时,若不慎将电位器阻值调整过小(或过大),则会使IC过大而烧坏管子,所以应该用一只固定电阻与电位器串联使用。图3-18电路中是用Rb1和电位器Rb2串联构成Rb。2.放大电路的动态指标测试放大电路的主要指标有电压放大倍数Av、输入电阻Ri、输出电阻Ro,以及最大不失真输出电压VO(max)等。在进行动态测试时,各电子仪器与被测电路的连接如图3-14所示。实验电路则如后面的图3-18所示。图3-14实验电路与各测试仪器的连接提示:为防止干扰,各仪器的公共接地端与被测电路的公共接地端应连在一起。同时,信号源、毫伏表和示波器的信号线通常都采用屏蔽线,而直流电源VCC的正、负电源线可只需普通导线即可。(1)电压放大倍数Av的测量输入信号选用1KHz、约5mV的正弦交流信号,用示波器观察放大电路输出电压VO的波形,在输出信号没有明显失真的情况下,用毫伏表测得VO和VI,于是可得。(2)最大不失真输出电压的测量放大电路的线性工作范围与三极管的静态工作点位置有关。当ICQ偏小时,放大电路容易产生截止失真;而ICQ偏大时,则容易产生饱和失真。需要指出的是,当ICQ增大时,VO波形的饱和失真比较明显,波形下端出现“削底”,如图3-15a所示。而当ICQ减小时,VO波形将出现截止失真,如图3-15b所示,波形上端出现“削顶”。(a)(b)(c)当放大电路的静态工作点调图3-15静态工作点对输出电压Vo波形的影响整在三极管线性工作范围的(a)VO易出现饱和失真(b)VO易出现截止失真中心位置时,若输入信号(c)VO波形上下半周同时出现失真VI过大,VO的波形也会出现失真,上下同时出现“削顶”和“削顶”失真,如图3-15(c)所示。此时,用毫伏表测出VO的幅度,即为放大电路的最大不失真输出电压Vo(max)。(3)输入电阻Ri的测量输入电阻的测量电路如图3-16所示。图3-16测量输入电阻的电路放大电路的输入电阻:在放大电路的输入端串联一只阻值已知的电阻RS(可取510Ω),见图3-16所示,通过毫伏表分别测出RS两端对地电压,求得RS上的压降(Vs-Vi),则:所以有通过测量VS和Vi来间接地求出RS上的压降,是因为RS两端没有电路的公共接地点。若用一端接地的毫伏表测量,会引入干扰信号,以致造成测量误差。(4)输出电阻的测量放大电路的输出端可看成有源二端网络。如图3-17所示。图3-17测量输出电阻的电路用毫伏表测出不接RL时的空载电压Vo’和接负载RL后的输出电压Vo,即可间接地推算RO的大小:。(5)放大电路频率特性的测量放大电路频率特性是指放大电路的电压放大倍数Av,与输入信号频率之间的关系。Av随输入信号频率变化下降到0.707Av。时所对应的频率定义为下限频率和上限频率,通频带为。上、下限频率可用以下方法测量:先调节输入信号Vi使Vi频率为1kHz;调节Vi幅度,使输出电压Vo幅度为1V。保持Vi幅度不变,增大信号Vi的频率,Vo幅度随着下降,当Vo下降到0.707V时,对应的信号额率为上限频率;保持Vi幅度不变,降低Vi频率,同样使Vo幅度下降到0.707V时,对应的信号频率为下限频率。(6)观察截止失真、饱和失真两种失真现象测量电路如图3-18所示,在ICQ=3.0mA,RL=∞情况下,增大输入信号,使输出电压保持没有失真,然后调节电位器Rb2阻值,改变电路的静态工作点,使电路分别产生较为明显的截止失真与饱和失真,测出产生失真后相应的集电极静态电流。做好相应的实验记录。图3-18共射放大电路举例图3-19共射放大电路对应的三个仿真电路图图3-20共集电极放大电路举例三.实验内容1.查阅手册并测试晶体三极管(3DG100D、CS9013)、场效应管(3DJ6G)的参数,记录所查和所测数据。2.用晶体三极管3DG100D或CS9013组成如图3-21所示单管共射极放大电路,通过改变电位器R2,使得VCE为4V,测量此时VCEQ、VBEQ、Rb的值,计算放大电路的静态工作点Q对应的三个参数值。3.在下列两种情况下,测量放大电路的电压放大倍数和最大Av不失真输出电压VOMAX。(1)RL=R4=∞(开路)②RL=R4=10kΩ。建议:最初使用1KHz、5mV的正弦信号作为输入信号进行测试;然后改变输入信号的幅值,使用双踪显示方式同时显示VI与VO,进行监视,尽量选择较大幅度的正弦信号作为放大器的VI,在保证VO波形不失真的条件下图3-21单管共射极放大电路进行测量。(若VO波形失真,所测动态参数就毫无意义)。表3-09静态数据记录表实测值实测计算值VCE(V)VBE(V)Rb(KΩ)VCEQ(V)IBQ(μA)ICQ(mA)表3-10测AV的记录表实测值理论估算值实测计算值Vi(mV)Vo(mV)AVAV4.观察饱和失真和截止失真,并测出相应的集电极静态电流。5.测量放大电路的输入电阻Ri和输出电阻Ro。*6.按照图3-10设计BJT的β测试电路,确定电路中所有元器件和输入电压的参数值,并对测试结果进行比较和误差分析。图3-10BJT的β值测试电路图*7.测量图3-18放大电路带负载时的上限频率和下限频率。*8.实验电路如图3-20所示,要求仿真并实物实现电路,计算并实测电路的输入电阻和输出电阻。四.思考题1.Rb为什么要由一个电位器和一个固定电阻串联组成?2.电解电容两端的静态电压方向与它的极性应该有何关系?3.如果仪器和实验线路不共地会出现什么情况?通过实验说明。五.实验报告1.按照实验准备的要求完成设计作业一份,并估算放大电路的性能指标。2.记录实验中测得的有关静态工作点和电路的Au、Vo(max)、Ri和Ro的数据。3.认真记录和整理测试数据,按要求填入表格并画出输入、输出对应的波形图。4.对测试结果进行理论分析,找出产生误差的原因。5.详细记录组装、调试过程中发生的故障或问题,进行故障分析,并说明排除故障的过程和方法。6.写出对本次实验的心得体会,以及改进实验方法的建议。提示:1.组装电路时,不要弯曲三极管的三个电极,应当将它们垂直地插入面包板孔内。2.先分别组装好电路,经检查无误后,再打开电源开关。3.测试静态工作点时,应关闭信号源。4.本实验接点多,元器件多,组装时一定要确保接触良好,否则,会因接触不良,出现错误或造成电路故障。三极管的主要参数:
特征频率:当f= fT时,三极管完全失去电流放大功能.如果工作频率大于fT,电路将不正常工作。
fT称作增益带宽积,即fT=βfo。若已知当前三极管的工作频率fo以及高频电流放大倍数,便可得出特征频率fT。随着工作频率的升高,放大倍数会下降.fT也可以定义为β=1时的频率。
电压/电流:用这个参数可以指定该管的电压电流使用范围。
hFE:电流放大倍数。
VCEO:集电极发射极反向击穿电压,表示临界饱和时的饱和电压。
PCM:最大允许耗散功率。
封装形式:指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在电路板上实现。
扩展资料:
电流放大的结构及原理:
1、电路结构
电流放大器电路拓扑结构可以为电压、电流在第一象限的Buck 电路,也可以采用电流单向流动、电压双象限的H 桥式电路,也可以采用四象限H 桥式电路,其拓扑电路结构如图2(a)~图2(c)所示。这三种电路结构针对不同应用场合灵活选取。
2、基本原理
电流放大器采用输出电流闭环控制,影响电流输出响应速度的主要因素是阻感性负载的时间常数Te= L/RL,当此时间常数较大时,输出电流响应难以提高。因此,提高电流放大器响应速度的主要措施就是减小被控对象的等效时间常数。
参考资料来源:百度百科——三极管
参考资料来源:百度百科——电流放大器
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)