N型半导体中多数载流子是自由电子,少数载流子是空穴。怎么解释 不懂??

N型半导体中多数载流子是自由电子,少数载流子是空穴。怎么解释 不懂??,第1张

n代表negative 表示富电子体系。一般是硅杂V族元素,多了电子。所以大多数载流子是自由电子

P型半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,形成P型半导体。

N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。

N型半导体中 自由电子的浓度大于空穴的浓度,称为多数载流子,空穴称为少数载流子。

扩展资料:

掺杂和缺陷均可造成导带中电子浓度的增高. 对于锗、硅类半导体材料,掺杂Ⅴ族元素(磷、砷、锑等),当杂质原子以替位方式取代晶格中的锗、硅原子时。

可提供除满足共价键配位以外的一个多余电子,这就形成了半导体中导带电子浓度的增加,该类杂质原子称为施主. Ⅲ-Ⅴ族化合物半导体的施主往往采用Ⅳ或Ⅵ族元素。

参考资料来源:百度百科-N型半导体

一、电子导电和空穴导电的区别:

1、形成的原因不同:

在外电场中,P型半导体中的电子会逆电场方向依次填补空穴,同时空穴也就沿电场方向移动。空穴就可以被认为是带正电的粒子,以它的运动取代电子的运行来解释P型半导体中电流的形成。电子导电由于自由电子的定向移动而导电的现象。

2、机理不同:

空穴处由于有净余的正电荷,因此会吸引周围其他的电子过来,这样电子在半导体中运动就容易多了,可以发现,空穴导电看似是净余正电荷吸引其他电子而将正电荷转移,其实事实上仍是电子导电,移动的空穴只是正电荷等效。

二、空穴电流不是由自由电子递补空穴所形成的,而是价带中的电子在空穴中的转移形成的。

晶体中原子外层空穴不是恒定不变的,可以被其他的价电子填补,也就是还处在价带中的那些电子可以在各个坑之间跳槽。价带中的电子和自由电子有很多不同,并不是自由流动的,只能在各坑之间转移。

扩展资料:

电子导电的相关特点:

1、电子或空穴的迁移率比离子大得多,因此材料中即使有少量的电子或空穴存在时,其对电导的贡献不能忽略,并取决于这类载流子的浓度。相对于不同的载流子浓度,陶瓷材料电子导电行为可以相差很大,从接近于金属到接近于绝缘体。

2、电子导电的特征是具有Hall效应,即当电流流过试样时,如在垂直于电流方向上施加一个磁场,则会在垂直于电流和磁场的平面上产生一个电场。如果材料中存在自由电子或空穴,它们在电场作用下会产生定向移动。

3、由于离子的质量比电子大得多,因而在磁场的作用下离子不会产生横向移动。因此,利用Hall效应可以区分陶瓷材料是离子导电还是电子(空穴)导电。

参考资料来源:百度百科-空穴导电

参考资料来源:百度百科-电子导电

下面,我们将采用对比分析的方法来认识P型半导体和N型半导体。

P型半导体也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。

N型半导体也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。

扩展资料

半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。

以GaN(氮化镓)为代表的第三代半导体材料及器件的开发是新兴半导体产业的核心和基础,其研究开发呈现出日新月异的发展势态。GaN基光电器件中,蓝色发光二极管LED率先实现商品化生产 成功开发蓝光LED和LD之后,科研方向转移到GaN紫外光探测器上 GaN材料在微波功率方面也有相当大的应用市场。氮化镓半导体开关被誉为半导体芯片设计上一个新的里程碑。美国佛罗里达大学的科学家已经开发出一种可用于制造新型电子开关的重要器件,这种电子开关可以提供平稳、无间断电源。

参考资料

半导体-百度百科


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8345393.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-15
下一篇 2023-04-15

发表评论

登录后才能评论

评论列表(0条)

保存