N型半导体:也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。
在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。
P型半导体:也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。
在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。
扩展资料
在纯硅中掺入微量3价元素铟或铝,由于铟或铝原子周围有3个价电子,与周围4价硅原子组成共价结合时缺少一个电子,形成一个空穴。空穴相当于带正电的粒子,在这类半导体的导电中起主要作用。
在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。空穴主要由杂质原子提供,自由电子由热激发形成。
用霍尔效应:两端通电,在内部会形成稳定电流,但在半导体的上下表面是没有电位差的;然后在半导体的两个对面的侧,加一个面磁场,这个时候在半导体另两个侧面上会形成电势差(因为内部的载流子在磁场作用下发生了偏转)。
因为N型半导体载流子是电子,故根据电流的方向和两个侧面的电位高低就可以进行判断。
如果条件允许,找一个掺杂已知的半导体,然后把他们粘到一起,组成个整体结,分别测两端电流导通情况,如果出现不能导通情况,则说明未知的和已知的相反,如果都导通,则相同。
当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直于电流和磁场的方向会产生一附加电场,从而在半导体的两端产生电势差,这一现象就是霍尔效应,这个电势差也被称为霍尔电势差。霍尔效应使用左手定则判断。
扩展资料:
在半导体上外加与电流方向垂直的磁场,会使得半导体中的电子与空穴受到不同方向的洛伦兹力而在不同方向上聚集,在聚集起来的电子与空穴之间会产生电场。
电场力与洛伦兹力产生平衡之后,不再聚集,此时电场将会使后来的电子和空穴受到电场力的作用而平衡掉磁场对其产生的洛伦兹力,使得后来的电子和空穴能顺利通过不会偏移。
固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。
正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。平行电场和电流强度之比就是电阻率。大量的研究揭示:参加材料导电过程的不仅有带负电的电子,还有带正电的空穴。
参考资料来源:百度百科——霍尔效应
一、性质不同
1、碳点:尺寸小于20纳米的具有荧光性质的碳颗粒。
2、碳量子点:碳量子点与各种金属量子点类似,碳量子点在光照的情况下可以发出明亮的光。
二、结构特点不同
1、碳点:可以是sp2和sp3的杂化碳结构,具有单层或多层石墨结构,也可以是聚合物类的聚集颗粒。
2、碳量子点:碳量子点的结构和组成决定了它们性质的多样性。碳量子点比较明显的一个特征就是在紫外光区有较强的吸收峰,并且在可见光区域有长拖尾。
三、特点不同
1、碳点:碳点(CDs)在人体中具有更好的化学稳定性和相对较长的系统循环。它们是一类重要的荧光碳基纳米材料,具有生物医学应用的潜力。与半导体量子点相比,CDs具有较高的抗光漂白性,更好的生物相容性和较低的毒性。发射波长取决于尺寸,结晶度和表面化学性质。CDs可以生成可靠的光信号,并可以从体内快速清除。
2、碳量子点:碳量子点具有优秀的光学性质,良好的水溶性、低毒性、环境友好、原料来源广、成本低、生物相容性好等诸多优点。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)