[词典] 固化炉,熟化炉
[例句]The snap curing oven is key equipment in the semiconductor packaging.
半导体封装快速养护炉是半导体封装过程中的一个关键设备。
【TSD。M】
1. Semiconductor laser also known as laser diodes (LD). Into the 1980s, people absorb the semiconductor development of the latest achievements in physics, using a quantum well (QW) and strained quantum well (SL-QW), and other new structures, the introduction of index modulation Bragg launchers and enhanced modulation Bragg launchers The latest technology, and also the development of the MBE, MOCVD and the CBE, and other new technology of crystal growth, making the new epitaxial growth technology to precisely control the crystal growth, to achieve the precision of atomic layers thick, high-quality grown quantum wells and strained quantum well materials. Thus, to create the LD, the threshold current significant drop significantly improve the conversion efficiency, output power have increased significantly lengthen life.2. Optoelectronics, the rapid development mainly based on quantum mechanics and materials science in the development, with particular attention is the development of optoelectronic semiconductors. LED, LD Shenqi these electronic devices is the result of this development, particularly the recent development of the organic photoelectric materials, and more is great to promote the progress of the photoelectric materials.
Why is the first semiconductor LED »
When the electronic conduction band jumped from the top to enter the zone at the time, a certain loss of energy, the energy becomes a photon emission out, is popular to say that the luminescence. Oh:) semiconductor laser is a direct bandgap semiconductor materials constitute the PN junction of material or PIN entered into a small laser. Semiconductor laser work of dozens of substances, has made laser Jia arsenide semiconductor material (GaAs), arsenic Gu (InAs), gallium nitride (GaN), antimony and Gu (InSb), curing the pot (cds), hoof-fu (CdTe), lead selenide (PbSe), tellurium and lead (PhTe ), Al Jia arsenic (A1xGa, -, As), Gu phosphorus arsenic (In-PxAS), and so on. Semiconductor laser incentive There are three main ways, that is, people-Note, optical pump-and-high-energy electron beam incentives. The vast majority of Semiconductor laser is the way of incentives, Notes, or to Pn guitar and forward voltage, so that the guitar in a regional plane stimulated emission, that is a positive bias of the diodes, also known as the semiconductor laser diode laser diode . On the semiconductor, electronics is due in the transition between the band, rather than in discrete energy levels between the transition, the transition energy is not a set value, which makes semiconductor laser output wavelength distribution in a very broad The scope. They issued by the wavelength of between 0.3-34um. Wavelength range of its decision on the materials used by the band gap, the most common is AlGaA: double-heterojunction laser, the output wavelength of 750 - 890nm. The world On the first semiconductor laser is available in 1962, after several decades of research, semiconductor laser achieved a surprising development, and its infrared wavelengths from the red light green to blue, gradually expanding the scope covered, the performance Parameters also have greatly increased their production by the proliferation of technology has to LPE Law Act (LPE), extension of gas (VPE), MBE Act (MBE), MOCVD method (metal organic compounds vapor deposition) , Chemical beam epitaxy (CBE) and their various combined, and other technology. Lasing closure of its current value from a few hundred mA down to a few dozen mA, until the sub-mA, its life expectancy by a few hundred to tens of thousands of hours, and 1 million hours from the initial low-temperature (77 K) under development to operate at room temperature for work, the power output by several milliwatts to kilowatts level (Array) it has a high efficiency, small size, light weight, simple structure, can Power for the direct conversion of laser energy, high power conversion efficiency (has reached more than 10 per cent, up to 50 per cent). Facilitate direct modulation, power-saving advantages, applications growing. At present, the fixed-wavelength laser diode to use the number of Habitat All of the first laser, the application of certain important areas over the past used the other lasers, has gradually been replaced by a semiconductor laser.
Semiconductor Laser is the biggest drawback: laser properties affected by temperature, the beam divergence angle greater (in general several times to 20 degrees), so in the direction and coherence of monochrome and other poor areas. But with the With the rapid development of science and technology, the semiconductor laser-depth study positive direction, the performance of semiconductor laser continuously improve. Semiconductor laser power can reach very high level, and beam quality has been greatly improved. Semiconductor laser as to The core semiconductor photonics technology in the 21st century information society will make more progress, play a bigger role.
光是具有特定频率(波长)的电磁辐射,具有能量。利用光的能量,诱导具有化学活性的液体化学物质(光引发剂、树脂、单体)通过快速聚合交联,瞬间实现固态材料的过程称为光固化技术。与热固化方法相比,光固化具有固化速度快、无需加热、较少使用溶剂、高效节能、固化过程可自动化 *** 作等优点,光固化被称为21世纪的绿色技术。光固化材料已广泛应用于我们日常生活的方方面面,如涂料、油墨、印刷、光学透镜、微电子器件、光盘、光纤等领域,并形成了全球120亿美元的应用市场。Light is a specific frequency (wavelength) of electromagnetic radiation, with energy. Using light energy, chemical liquid induced with chemical activity (photoinitiator, resin, monomer) by rapid polymerization crosslinking, the instant realization process of solid state materials called light curing technology. Compared with the thermal curing method, UV curing speed, without heating, using less solvent, high efficiency and energy saving, the curing process advantages of automatic operation, light cured called green technology in twenty-first Century. Light cured materials have been widely used in every aspect of our daily lives, such as paint, ink, printing, optical lens, microelectronic devices, optical disk, optical fiber and other fields, and the formation of a $12000000000 global market.
光刻技术也是利用光的能量,通过控制光照的区域使具有化学活性的液体化学物质快速发生光化学反应,并通过实现选择性的腐蚀得到图形的技术。为了实现选择性的腐蚀,需要使用溶解性、熔融性或亲合性在曝光后发生明显的变化的材料。这类材料称为光刻胶。光刻胶具有光化学敏感性,可利用其进行光化学反应,经曝光、显影等过程,将所需要的微细图形从掩模版转移至待加工的衬底上,然后进行蚀刻等工艺加工。光刻胶是微制造领域最为重要的材料,1959年被发明以来,就成为半导体工业最核心的工艺材料。光刻胶在随后的发展中被广泛应用于光电信息产业的微细图形线路的加工制作,是微细加工技术的关键性材料。
Lithography is the use of light energy, by controlling the illumination area make chemical liquid with chemical activity fast photochemical reaction occurs, and graphics technology through the implementation of selective corrosion. In order to realize the selective corrosion, require the use of solubility, melting or dear compliance after exposure change materials. This kind of material called photoresist. Photoresist with chemical sensitivity, which can be used for photochemical reactions, exposure, developing process, will need fine pattern from the substrate to be processed mask, and etching process. Photoresist is the most important material for micro manufacturing field, since the invention in 1959, will become the core technology of material of semiconductor industry. Patterned photoresist processing line in the subsequent development are widely used in optoelectronic information industry production, is the key material of microfabrication technology.
光固化材料、光刻胶虽然都是由光引发剂(或光敏剂)、树脂、单体(或活性稀释剂)三种主要化学品原料和其他助剂组成的,但光刻胶需要使用专用的化学品原料。光刻胶是成像材料,和光固化材料相比,用途不同,使用的曝光光源和光能不同,反应机理不完全相同,对于材料的溶解性、耐蚀刻性、感光性能、耐热性等要求不同,各类光刻胶使用的光引发剂、树脂、单体等原料需要化学结构不同、性能各异的专用化学品。而且光刻胶用于加工制作非常精细的图形线路,对原材料的纯度、杂质、金属离子含量等有非常高的要求。光刻胶种类非常多,根据其化学反应机理和显影原理,可分负性胶和正性胶两类。基于光刻胶的化学结构,可以分为三种类型:光聚合型、光分解型、光交联型。光刻胶经过几十年不断的发展和进步,应用领域不断扩大,衍生出非常多的种类,不同用途的光刻胶曝光光源、反应机理、制造工艺、成膜特性、加工图形线路的精度等要求性能不同,对于原材料的性能要求也不一样。因此每一类光刻胶使用的原料在化学结构、性能上都比较特殊,要求不同品质等级的专用化学品。
Light cured materials, photoresist although is light initiator (or photosensitizers), resin, monomer (or reactive diluent) is composed of three species of main chemical raw material and other additives, but the photoresist requires the use of special chemical materials. Photoresist is imaging materials, compared, and light curing materials for different purposes, the exposure light source and light energy use are different, the reaction mechanism is not completely the same, the solubility, corrosion resistant material etching, the photographic properties, heat resistance and other requirements are different, all kinds of photoresist using light initiated special chemical agent, resin, monomer raw materials require different chemical structure, the performance of different. But the photoresist for processing graphic lines are very fine, have very high requirements on the purity of raw materials, impurities, metal ion content. Many photoresist species, according to the chemical reaction mechanism and developing principle, can be divided into negative and positive glue two glue. The chemical structure of photoresist based, can be divided into three types: light polymerization type, light type, light crosslinking type decomposition. The photoresist after decades of continuous development and progress, application domain expands unceasingly, derived from a wide variety of different types, precision of the exposure light source, reaction mechanism, manufacturing process, film properties, processing graphics line photoresist different uses of different properties, the performance requirements of raw materials are not the same. Therefore, each kind of photoresist materials used in chemical structure, properties are more special, special chemicals required different levels of quality.
光引发剂是一种能吸收光能(辐射能),经激发产生化学变化生成活性中间体,并进一步引发聚合的物质,是光刻胶的关键组分,对光刻胶的感光度、分辨率等起决定性作用。光引发剂因产生的活性中间体不同,可分为自由基型光引发剂和阳离子型光引发剂。光刻胶中用到的自由基型光引发剂较多,要求光引发剂对曝光光源波长的吸收率高,和光刻胶树脂的相容性好,或者和颜料、染料的匹配性好等。
Photo initiator is able to absorb light energy (radiation), the induced generation of reactive intermediates chemical changes, and further polymerization material, is a key group of photoresist, photoresist sensitivity, resolution plays a decisive role. Photoinitiator for reactive intermediates produced by different, can be divided into radical photoinitiator and cationic photoinitiators. Free radical type used in the photoetching glue photoinitiator is more, light induced absorption agent on the requirements of the exposure light source wavelength rate is high, and the photoresist resin has good compatibility and pigments, dyes, or a good matching etc..
光增感剂是引发助剂,是指能吸收光能将能量转移给光引发剂或本身不吸收光能但协同参与光化学反应提高引发效率的物质。由于曝光光源的变化,光刻胶需要用到光增感剂的配方较多。
The photo sensitizer is the cause of AIDS, which can absorb the light energy is the energy transferred to the light initiator or itself does not absorb light energy but the synergy of photochemical reactions in improving efficiency of initiation material. Because of the change of the exposure light source, photoresist need more light sensitizing agent formula.
光产酸剂是指类似于阳离子光引发剂,但阳离子部分不含金属、磷等元素,在吸收光能后分子发生光解反应,产生强酸引发反应的物质,用于最尖端的化学增幅光刻胶。
Light acid producing agent is similar to the cationic photoinitiator, but cationic metal free, phosphorus and other elements, the photolysis in absorb the light energy and molecular, produce acid reaction substance, for chemically amplified photoresist cutting-edge.
树脂是光刻胶中比例最大的组分,构成光刻胶的基本骨架,主要决定曝光后光刻胶的基本性能,包括硬度、柔韧性、附着力、曝光前和曝光后对特定溶剂的溶解度产生变化、光学性能、耐老化性、耐蚀刻、热稳定性等。
Resin is the largest proportion of photoresist composition, form the basic frame of photoresist, mainly determines the basic performance after exposure of photoresist, including hardness, flexibility, adhesion, exposure before and after exposure to a specific solvent solubility changes, optical properties, aging resistance, corrosion resistance, thermal stability.
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)