半导体二极管伏安特性曲线

半导体二极管伏安特性曲线,第1张

半导体二极管的核心是PN结,它的特性就是PN结的特性——单向导电性。用实验的方法,在二极管的阳极和阴极两端加上不同极性和不同数值的电压,同时测量流过二极管的电流值,就可得到二极管的伏一安特性曲线。该曲线是非线性的,如图1-13所示。正向特性和反向特性的特点如下。

                     

    1.正向特性

    当正向电压很低时,正向电流几乎为零,P89LPC954FBD这是因为外加电压的电场还不能克服PN结内部的内电场,内电场阻挡了多数载流子的扩散运动,此时二极管呈现高电阻值,基本上还是处于截止的状态。如图1 - 13所示,正向电压超过二极管开启电压Uon(又称为死区电压)时,电流增长较快,二极管处于导通状态。开启电压与二极管的材料和工作温度有关,通常硅管的开启电压为Uon=0.5V(A点),锗管为Uon=0.1 V(A'点)。二极管导通后,二极管两端的导通压降很低,硅管为0. 6~0.7 V,锗管为0.2~0.3 V如图1-13中B、B'点。

    2.反向特性

    在分析PN结加上反向电压时,已知少数载流子的漂移运动形成反向电流。因少数载子数量少,且在一定温度下数量基本维持不变,因此,厦向电压在一定范围内增大时,反向电流极微小且基本保持不变,等于反向饱和电流Is。

    当反向电压增大到UBR时,外电场能把原子核外层的电子强制拉出来,使半导体内载流子的数目急剧增加,反向电流突然增大,二极管呈现反向击穿的现象如图1-13中D、D'点。二极管被反向击穿后,就失去了单向导电性。二极管反向击穿又分为电击穿和热击穿,利用电击穿可制成稳压管,而热击穿将引起电路故障,使用时一定要注意避免二极管发生反向热击穿的现象。

    二极管的特性对温度很敏感。实验表明,当温度升高时,二极管的正向特性曲线将向纵轴移动,开启电压及导通压降都有所减小,反向饱和电流将增大,反向击穿电压也将减小。

伏安特性曲线图常用纵坐标表示电流I、横坐标表示电压U,以此画出的I-U图像叫做导体的伏安特性曲线图。伏安特性曲线是针对导体的,也就是耗电元件,图像常被用来研究导体电阻的变化规律,是物理学常用的图像法之一。

扩展资料

画电源的伏安特性曲线

1,电路:电源、开关、滑动变阻器、电流表、二极管、保护电阻串联连接,二极管上并联电压表。

2,建立坐标系:横轴为电压,纵轴为电流。

3,打开开关接通电路,调节滑动变阻器,对电压及对应的电流的变化作详细记录。

4,根据记录的数据,在坐标系中画出相应的点,把这些点连成线就是二极管的伏安特性曲线。

电源伏安特性曲线图线面积的意义

在电源的伏安特性曲线上取一点,则该点的横坐标表示干路中的电流,纵坐标表示电源的路端电压;由该点分别向两坐标轴作垂线,则此垂线与两坐标轴所围的面积表示电源的输出功率。

电源伏安特性曲线与电阻伏安特性曲线交点的意义

对于某一定值电阻R,其电压与电流成正比,即U=IR,在U-I直角坐标系中,其伏安特性曲线为一条过原点的直线,此直线与电源伏安特性曲线的交点表示了闭合电路的工作状态。

参考资料来源:搜狗百科-伏安特性曲线

伏安特性曲线图常用纵坐标表示电流I、横坐标表示电压U,以此画出的I-U图像叫做导体的伏安特性曲线图。这种图像常被用来研究导体电阻的变化规律,是物理学常用的图像法之一。伏安法1.连接电路,开始时,滑动变阻器滑片应置于最小分压端,使灯泡上的电压为零。2.接通开关,移动滑片C,使小灯泡两端的电压由零开始增大,记录电压表和电流表的示数。3.在坐标纸上,以电压U为横坐标,电流强度I为纵坐标,利用数据,作出小灯泡的伏安特性曲线。4.由R=U/I计算小灯泡的电阻,将结果填入表中。以电阻R为纵坐标,电压U为横坐标,作出小灯泡的电阻随电压变化的曲线。5.由P=IU计算小灯泡的电功率,将结果填入表中。以电功率P为纵坐标,电压U为横坐标,作出小灯泡电功率随电压变化的曲线。6,分析以上曲线。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8359958.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-15
下一篇 2023-04-15

发表评论

登录后才能评论

评论列表(0条)

保存