等离子发射光谱-质谱分析法具有什么优缺点?

等离子发射光谱-质谱分析法具有什么优缺点?,第1张

等离子体发射光谱ICP-OES与等离子体质谱ICP-MS是两种不同的仪器。没有OES-MS联用仪。

ICP-OES灵敏度高低检测限,较宽的动态线性范围和多元素同时分析,用于痕量及部分常量元素定性定量分析,应用的行业范围也较广。

ICP-OES大部份元素的检出限为1—10ppb,一些元素在洁净的试样中也可得到令人注目的亚ppb级的检出限。由于其可以覆盖PPB级至百分含量范围,在一般的实验中运用较多。比如金属材料(不含超纯)、化工等各种行业。

ICP-MS具有元素、同位素、形态分析等定性定量分析能力,检测下限水平优于ICP-OES。

ICP-MS其检出限非常低,溶液的检出限大部份为ppt级,但是对于总的离子量有限制,因此分析基体复杂体系的方法检测限不一定比ICP-OES低。主要在环保/水质/电子材料(尤其是半导体行业)等方面运用较多。

ICP-MS的耐盐量较差,若涉及固体中浓度的检出限,ICP-MS检出限的优点会变差多达50倍,一些普通的轻元素(如S、Ca、Fe、K、Se)在ICP-MS中有严重的干扰,也将恶化其检出限。

ICP-MS对于所使用的试剂的纯度、分析用水、实验环境等要求均较高,而且仪器使用也较ICP-OES复杂。

ICP-MS 测量的是离子质谱,提供在3-250amu范围内每一个原子质量单位(amu)的信息,因此,ICP-MS除了元素含量测定外,还可测量同位素。

关键词:电感耦合等离子体发射光谱法;等离子体发射光光谱仪;应用及领域;化学分析;线性范围;                                                                                  

1 概述

电感耦合等离子体原子发射光谱法(ICP-AES)是以等离子体原子发射光谱仪为手段的分析方法,由于其具有检出限低、准确度高、线性范围宽且多种元素同时测定等优点,因此,与其它分析技术如原子吸收光谱、X-射线荧光光谱等方法相比,显示了较强的竞争力。在国外,ICP-AES法已迅速发展为一种极为普遍、适用范围广的常规分析方法,并已广泛应用于各行业,进行多种样品、70多种元素的测定,目前也已在我国高端分析测试领域广泛应用

2 电感耦合等离子体原子发射光谱法简介

2.1 电感耦合等离子体原子发射光谱法的工作原理【1】

感耦等离子体原子发射光谱分析是以射频发生器提供的高频能量加到感应耦合线圈上,并将等离子炬管置于该线圈中心,因而在炬管中产生高频电磁场,用微电火花引燃,使通入炬管中的氩气电离,产生电子和离子而导电,导电的气体受高频电磁场作用,形成与耦合线圈同心的涡流区,强大的电流产生的高热,从而形成火炬形状的并可以自持的等离子体,由于高频电流的趋肤效应及内管载气的作用,使等离子体呈环状结构。

样品由载气(氩)带入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析)根据特征谱线强度确定样品中相应元素的含量(定量分析)。

2.2 电感耦合等离子体原子发射光谱法测定中存在的干扰 [2]

电感耦合等离子体原子发射光谱法测定中通常存在的干扰大致可分为两类:

一类是光谱干扰,主要包括连续背景和谱线重叠干扰另一类是非光谱干扰,主要包括化学干扰,电离干扰,物理干扰等。因此,除应选择适宜的分析谱线外,干扰的消除和校正也是必须的,通常可采用空白校正,稀释校正,内标校正,背景扣除校正,干扰系数校正,标准加入等方法。

2.3 对仪器的一般要求

等离子发射光谱法光谱仪由样品引入系统,电感耦合等离子(ICP)光源,色散系统,检测系统等构成,并配有计算机控制及数据处理系统,冷却系统,气体控制系统等。样品引入系统 按样品状态不同可以分为液体或固体进样,通常采用液体进样方式。样品引入系统由两个主要部分组成:样品提升部分和雾化部分。样品提升部分一般为蠕动泵,也可使用自提升雾化器。要求蠕动泵转速稳定,泵管d性良好,使样品溶液匀速地泵入,废液顺畅地排出。雾化部分包括雾化器和雾化室。样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体源。要求雾化器雾化效率高,雾化稳定性高,记忆效应小,耐腐蚀雾化室应保持稳定的低温环境,并需经常清洗[3]。常用的溶液型雾化器有同心雾化器,交叉型雾化器等常见的雾化室有双通路型和旋流型。实际应用中宜根据样品基质,待测元素,灵敏度等因素选择合适的雾化器和雾化室。

电感耦合等离子体光源的"点燃",需具备持续稳定的纯氩气流,炬管,感应圈,高频发生器,冷却系统等条件。样品气溶胶被引入等离子体源后,在6,000K~10,000K的高温下,发生去溶剂,蒸发,离解,激发,电离,发射谱线。根据光路采光方向,可分为水平观察 ICP 源和垂直观察 ICP 源双向观察ICP。光源可实现垂直/水平双向观察。实际应用中宜根据样品基质,待测元素,波长,灵敏度等因素选择合适的观察方式。电感耦合等离子体原子发射光谱的单色器通常采用光栅或棱镜与光栅的组合,光源发出的复合光经色散系统分解成按波长顺序排列的谱线,形成光谱。 电感耦合等离子体原子发射光谱的检测系统为光电转换器,它是利用光电效应将不同波长光的辐射能转化成电信号。常见的光电转换器有光电倍增管和固态成像系统两类。固态成像系统是一类以半导体硅片为基材的光敏元件制成的多元阵列集成电路式的焦平面检测器,如电荷耦合器件(CCD),电荷注入器件(CID)等,具有多谱线同时检测能力,检测速度快,动态线性范围宽,灵敏度高等特点。检测系统应保持性能稳定,具有良好的灵敏度,分辨率和光谱响应范围。 冷却和气体控制系统 冷却系统包括排风系统和循环水系统,其功能主要是有效地排出仪器内部的热量。循环水温度和排风口温度应控制在仪器要求范围内。气体控制系统须稳定正常地运行,氩气的纯度应不小于99.99%。

1 概述

电感耦合等离子体原子发射光谱法(ICP-AES)是以等离子体原子发射光谱仪为手段的分析方法,由于其具有检出限低、准确度高、线性范围宽且多种元素同时测定等优点,因此,与其它分析技术如原子吸收光谱、X-射线荧光光谱等方法相比,显示了较强的竞争力。在国外,ICP-AES法已迅速发展为一种极为普遍、适用范围广的常规分析方法,并已广泛应用于各行业,进行多种样品、70多种元素的测定,目前也已在我国高端分析测试领域广泛应用

2 电感耦合等离子体原子发射光谱法简介

2.1 电感耦合等离子体原子发射光谱法的工作原理【1】

感耦等离子体原子发射光谱分析是以射频发生器提供的高频能量加到感应耦合线圈上,并将等离子炬管置于该线圈中心,因而在炬管中产生高频电磁场,用微电火花引燃,使通入炬管中的氩气电离,产生电子和离子而导电,导电的气体受高频电磁场作用,形成与耦合线圈同心的涡流区,强大的电流产生的高热,从而形成火炬形状的并可以自持的等离子体,由于高频电流的趋肤效应及内管载气的作用,使等离子体呈环状结构。

样品由载气(氩)带入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析)根据特征谱线强度确定样品中相应元素的含量(定量分析)。

2.2 电感耦合等离子体原子发射光谱法测定中存在的干扰 [2]

电感耦合等离子体原子发射光谱法测定中通常存在的干扰大致可分为两类:

一类是光谱干扰,主要包括连续背景和谱线重叠干扰另一类是非光谱干扰,主要包括化学干扰,电离干扰,物理干扰等。因此,除应选择适宜的分析谱线外,干扰的消除和校正也是必须的,通常可采用空白校正,稀释校正,内标校正,背景扣除校正,干扰系数校正,标准加入等方法。

2.3 对仪器的一般要求

等离子发射光谱法光谱仪由样品引入系统,电感耦合等离子(ICP)光源,色散系统,检测系统等构成,并配有计算机控制及数据处理系统,冷却系统,气体控制系统等。样品引入系统 按样品状态不同可以分为液体或固体进样,通常采用液体进样方式。样品引入系统由两个主要部分组成:样品提升部分和雾化部分。样品提升部分一般为蠕动泵,也可使用自提升雾化器。要求蠕动泵转速稳定,泵管d性良好,使样品溶液匀速地泵入,废液顺畅地排出。雾化部分包括雾化器和雾化室。样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体源。要求雾化器雾化效率高,雾化稳定性高,记忆效应小,耐腐蚀雾化室应保持稳定的低温环境,并需经常清洗[3]。常用的溶液型雾化器有同心雾化器,交叉型雾化器等常见的雾化室有双通路型和旋流型。实际应用中宜根据样品基质,待测元素,灵敏度等因素选择合适的雾化器和雾化室。

电感耦合等离子体光源的"点燃",需具备持续稳定的纯氩气流,炬管,感应圈,高频发生器,冷却系统等条件。样品气溶胶被引入等离子体源后,在6,000K~10,000K的高温下,发生去溶剂,蒸发,离解,激发,电离,发射谱线。根据光路采光方向,可分为水平观察 ICP 源和垂直观察 ICP 源双向观察ICP。光源可实现垂直/水平双向观察。实际应用中宜根据样品基质,待测元素,波长,灵敏度等因素选择合适的观察方式。电感耦合等离子体原子发射光谱的单色器通常采用光栅或棱镜与光栅的组合,光源发出的复合光经色散系统分解成按波长顺序排列的谱线,形成光谱。 电感耦合等离子体原子发射光谱的检测系统为光电转换器,它是利用光电效应将不同波长光的辐射能转化成电信号。常见的光电转换器有光电倍增管和固态成像系统两类。固态成像系统是一类以半导体硅片为基材的光敏元件制成的多元阵列集成电路式的焦平面检测器,如电荷耦合器件(CCD),电荷注入器件(CID)等,具有多谱线同时检测能力,检测速度快,动态线性范围宽,灵敏度高等特点。检测系统应保持性能稳定,具有良好的灵敏度,分辨率和光谱响应范围。 冷却和气体控制系统 冷却系统包括排风系统和循环水系统,其功能主要是有效地排出仪器内部的热量。循环水温度和排风口温度应控制在仪器要求范围内。气体控制系统须稳定正常地运行,氩气的纯度应不小于99.99%。

仪器介绍

ICP2000是天瑞仪器公司经多年技术积累而开发的电感耦合等离子体发射光谱仪,用于测定各种物质(可溶解于盐酸、硝酸、氢氟酸等)中常量、微量、痕量金属元素或非金属元素的含量。采用先进的电子电路系统和网络接口的通信方式,实现了仪器的寻峰、测试、谱图描迹快速简便化 *** 作,自动化程度高、 *** 作简便、稳定可靠,使结果准确度更高,人性化设计的仪器 *** 作界面,可针对不同元素、不同波长设置最佳的测试条件,并有仪器诊断功能,提高仪器的智能化 *** 作。

性能特点

1.可测元素70多种

2.分析速度快,一分钟可测5-8个元素

3.多元素同时分析,客户可以自由选择元素数量与安排测量顺序

4.检出限低,达到ppb量级,Ba甚至达到0.7ppb

5.线性动态范围宽,高达6个数量级,高低含量可以同时测量

6.分析成本低,一瓶氩气可以用8个小时

7.全自动化设计,除电源开关外,仪器全部功能由软件控制。

8.网络接口通讯方式,大大提升了通信速度,屏蔽了高频的干扰。

9.配备进口玻璃雾化器,雾化效率好,性能更稳定。

10. 软件通过质量流量控制器(MFC)来控制三路气体流量。

11. 点火方式:软件控制点火,有点火位置记忆功能,匹配位置记忆功能。

12.特有的仪器诊断功能,可实时监测仪器工作状态。

13.独立开发,具有自主知识产权的分析软件,人性化的 *** 作界面,中英文界面的快速切换,自动生成分析报告。

技术指标

①射频发生器技术指标:

1.电路类型:自激振荡电路,同轴电缆输出,匹配调谐,功率反馈闭环自动控制。

2.工作频率:40.68MHz±0.05%

3.频率稳定性:<0.1%

4.输出功率:800W—1200W

5.输出功率稳定性:<0.2%

6.电磁场泄漏辐射强度:距机箱30cm处电场强度E:<10V/m ;磁场:H<0.2A/m。

②进样装置技术指标:

1.输出工作线圈:铜质,带有聚四氟乙烯外套,内径25mm,3匝。

2.矩管:三同心型,外径20mm的石英矩管

3.同轴型喷雾器:外径6mm

4.双筒形雾室外径:35mm

5.氩气流量计规格和载气压力表规格:

(1)等离子气流量计 :0.0-20.0L/min

(2)辅助气流量计: 0.0-1.0L/min

(3)载气流量计:0.0-1.0L/min

(4)载气稳压阀:0-0.4MPa

(5)冷却水:水温20-25℃ 流量>7L/min 水压>0.1MPa ,冷却水电阻率大于1MΩ。

③分光器技术指标:

1.光路:Czerny-Turner

2.焦距: 1000 mm

3.光栅规格:离子刻蚀全息光栅,刻线密度3600线/mm(可选用刻线密度2400线/mm),刻划面积(80×110)mm

4.线色散率倒数:0.26nm/mm

5.分辨率:≤ 0.008nm(3600刻线). ≤0.015nm(2400刻线)

6.扫描波长范围: 3600线/mm扫描波长范围:190—500 nm 2400线/mm扫描波长范围:190—800 nm

7.步进电机驱动最小步距:0.001 nm

8.入射狭缝:25μm;出射狭缝:18μm

9.透镜:Φ30,1:1成像

10. 反射镜规格:(80×105)mm

测光装置:

1.光电倍增管规格:R212或R928

2.光电倍增管负高压: (-50~-1000)V

3.光电倍增管电流测量范围: (10~12~10~4)A

4.信号采集方式: V/F转换

5.采样电路:1mv对应频率100Hz;

6.仪器数据采集: 计数方式

7.测光方式:垂直观测

标准配置

1.ICP2000主机1台

稳压电源1台

自动控温冷却循环水装置1台

2.附件箱

应用领域

金属材料(包括贵金属、稀有金属)、非金属材料、矿石、土壤、核燃料、煤、石油及其产品、化肥、化工原料、半导体晶片、陶瓷材料、食品、药品、血液、水(纯水、废水)、空气等几乎所有材料中杂质(或粒子)的测定。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8368258.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-15
下一篇 2023-04-15

发表评论

登录后才能评论

评论列表(0条)

保存