第一名:YDP手机制冷器
此款散热器,是全网首款采用双风扇的半导体制冷器。采用了63组制冷晶体,其拥有强大的制冷性能外,搭配双5000转强力散热风扇,四面都可出风,性能非常稳定,快速降温只要1S。机身小巧,。使用效果最低温度达到0.1摄氏度,非常不错的半导体散热器。
第二名:小米手机散热器
小米“散热设备”内含有制冷晶片,合金散热柱,机身搭载5叶扇。原理是通电后风扇启动,两侧风道引流加持,让整个机身实现空气循环,来降温内部的制冷晶片,通过贴在手机背部的方式去逐渐降温。但不足的是制冷晶片本身背后大量的发热需要通过背部风扇排出,排风口正好就对着我的双手,机身过宽不方便使用,齐能达到2摄氏度。也是非常不错的手机散热器。
第三名:第一卫手机扇热器
这一款整体使用方式和上一款一样,一面吸热,一面散热。外观上多了些科技感。不同的是散热区域的面积比上一款小了,所以虽能制冷,但是因为散热功能不能达到效果,随着手机越来越热,制冷片也会因为吸收了太多的热量,导致制冷效果也会随之下降。使用效果还是能达到6摄氏度左右。
散热器分析:
手机散热器是可以散热的,但必须是那种外置的吸附在手机后背的散热器,带风扇的那种。
因为现在智能手机的后背都是一大块铝合金板,cpu工作时产生的热量就是通过这块铝板向外散发,而散热器的风扇不断的向其吹风,可以将热量迅速带走。
但缺点是散热器工作时需要接上usb供电,另外安装在手机背后导致手机的体积也就增大了。
半导体散热器,我们认为这个应该是钛合金的,会更加的好点,而且这个散热性阴道会更难好一点,橡胶的话应该是没有办法达到一个散热的效果的,而且我认为这个应该它的保温效果应该还是非常不错的,所以我认为最好还是使用钛合金会更好一点的最近有不少人文我散热器哪种好的问题,“AMD的原装散热器到底怎么样”??“要什么样的散热器才能使我的2500+稳定运行在3200+上”??“Prescott核心的赛扬D-320需要配合什么样的散热器才能稳超800MHz FSB?,让我们一起去看看。
CPU散热器到底哪种好:
一、散热片介绍:
1、纯铝制散热片
这种散热片是目前使用率最高的散热片之一,整体采用纯铝制造。铝,作为地壳中含有量最高的金属,成本低和热容低是其主要特点,虽然吸热慢,但放热很快,散热效果跟其结构和做工成正比,散热片数越多、底部抛光越好,散热效果越好,但也受其制造工艺上的制约,一般采用铝挤压式制造工艺的散热器凹槽的最小间隔只能做到1.1毫米。散热原理也是最简单的:利用散热器上的散热片来增大它与空气的接触面积,再利用风扇来加速空气流动从而带走散热片上的热量。这种散热片的价格也是最低的,跟以下几种散热器相比散热效果最差。
酷卫士特——麒麟CPU散热器
2、纯铜制散热片
这种散热片跟铝制散热片唯一的区别就是材质换成了纯铜,因为铜跟铝相比有个先天的优点:热传导效能为412w/mk,比铝的226w/mk提高了将近1倍,但铜也有个先天的缺点:热容太高了,也就是说这种散热片吸热快但放热慢,热量在铜片中的物理沉淀非常多,需要配合大功率高转速的风扇,才能达到理想的效果。由于铜具有良好的韧性,制造工艺上比铝容易的多,有折页式、插齿式等等。散热片的密度可以比铝制的做得更高,散热面积也相应更大,这些都可以弥补其热容高所导致散热慢的不足,但纯铜的单位成本和制造成本比铝高很多,直接导致这种散热片的价格居高不下,虽然价格高,但散热效果比铝制的要好多了。
3、嵌铜式铝制散热片
这种散热器可以说是用经济实惠的方式解决了铜和铝的矛盾关系——中间嵌铜块的铝制散热片,用铜块跟CPU接触,利用铜的快速吸热性来吸取CPU 的热量,再利用铝的快速放热性来释放铜块上的热量,这样做散热效果要好于单一的纯铜或纯铝散热片,但还远远不及纯银的效果,原因很简单:嵌铜散热片的制造过程是利用热胀冷缩的原理,将铝制散热片加热到一定的温度后,再把事先准备好的铜块嵌进去,等铝的温度下降后,收缩就把铜块紧紧地包在了一起,但是铜和铝不能做到100%的接触,所以在热传导效能方面会受到一定的影响,但优点是价格便宜,基本上几十元钱就能买到,比起动辄上百元的纯铜散热片来说,既经济实惠,且效果又好。
4、热管散热系统
这种散热系统与上述的散热片不同,上述的散热片是利用金属的热传导性能将热量从散热面积小的CPU表面传递到散热面积大的散热片上,因此,其散热性能取决于制造这个散热片所采用的材质。热管散热系统并不是利用金属的热传导性能来导热的,而是利用在密闭的铜管内液态介质的蒸发及冷凝过程传递热量的,物理常识告诉我们:液态到气态及气态到液态的转化,分别需要吸收及放出大量的热,所以热管传递热量的效率很高,导热系数比单一金属材质要高出几个数量级。具体请看图:
酷卫士特——青龙CPU散热器
原理是:在密闭的铜管中抽真空并填入沸点较低的液体,当铜管的一头温度升高时,这段铜管里面的液体就会受热而汽化,并依靠铜管内部两端的蒸汽压力差而向另一端移动,由于另一端的温度较低,气体移动到这里时,遇冷液化并反向流回,这个反向的流动依靠热管内壁丝网结构提供的毛细泵力进行的,我们知道,当液体变成气体时是要吸收大量的热,而当气体变成液体时会放出大量的热,热管就是利用这个原理来传导热量的,典型的例子就是图示的酷卫士特青龙热管散热器。
二、散热器结构介绍:
一个散热器的散热效果,不仅仅受其散热片所使用材质不同的影响,还受其散热面积的大小、底面抛光度、散热片的样式等诸多因素的影响,下面我们就来具体分析一下:
1、散热面积的大小
散热器的最基本散热方式就是利用散热片来增大散热面积,但CPU散热器的大小和重量都受到一定的局限,那么,怎么样才能使一定量体积的散热器拥有更大的散热面积呢?散热片形状的设计便起到了决定性的作用,让我们来看下面两张图的对比:
第一个图是普通的散热器,第二个图就是著名的酷卫士特麒麟散热器,不用多说,第二个中散热器的散热面积要比第一个图的大得多,所以其散热性能也要好得多。
2、散热片底部的抛光度
散热片的底部,也就是与CPU直接接触的平面,这里是吸收CPU热量的第一道关,一般来说,好的散热器底部抛光度应该相当高,成一个镜面,使其能与CPU紧密接触,尽量减少中间的缝隙,虽然能够用导热硅脂来填充缝隙,但导热硅脂的热传导系数远远没有金属直接接触到的高。
图中酷卫士特青龙散热器底部的抛光度非常高,由于散热器底部与CPU接触面间的紧密接触,其吸收CPU热量的速度就会很快,从而直接导致散热效果的显著提升。
三、关于散热方面的小知识
1、导热硅脂的涂抹
导热硅脂实际上是用来填充散热片与CPU之间那些微小的缝隙用的,普通导热硅脂的热传导性仅是铝的一半而已,有些人在涂抹导热硅脂的时候,涂上很多,以使其成为了一层垫子,其散热效果反而比不涂的更差,正确的 方法 应该是:在散热器底部和CPU的表面都涂抹上导热硅脂后,再用很平的诸如刀片之类的工具将它们全部刮掉,然后再涂上再刮掉,反复至少5次以上,用以填平其表面的缝隙,然后再将散热器跟CPU紧紧的按在一起不要动了,这样才能达到最好的效果。
在市场上能买到一种含银的导热硅脂,这种硅脂的导热性能比一般的要高出许多,毕竟含有了大量的银粉在里面,价格也比较昂贵!
还有一种是导热硅胶,它同导热硅脂的区别就是导热硅胶带有很强的粘性,能粘牢很多没有卡口的散热器,除非你是真的没有办法了,否则不推荐使用,因为如果采用硅胶的话,粘上去基本上就无法取下来了,除非用很薄的刀片慢慢切割下来才行,费时费力。
2、高温对CPU的危害
根据电子学理论,频率的提高(在稳定的前提下)对于半导体电子元件寿命不会有影响,但是频率变高后,却会产生更多的热量,电子元器件像CPU、内存等等,表面积都非常小,多产生的热量都聚集在这小小的地方,如散热不好将会产生极高的温度,从而引发“电子迁移”现象,而且现在CPU的主频越来越高,再加上还有我们这一伙 DIY 为了以获取更高的性能而加电压超频,如此一来,产生的热量会更多。
高热所导致的“电子迁移”现象会损坏半导体电子元器件。为了防止此现象的发生,我们应该把CPU的表面温度控制在摄氏50°C以下,这样,CPU的内部温度就可以维持在80°C以下,“电子迁移”现象就不会发生。“电子迁移”现象并非立刻就损坏芯片,它对芯片的损坏是一个缓慢的过程,或多或少会降低CPU的寿命,假如你让你的CPU持续在非常高的温度下工作,那你的CPU可就......。
那么“电子迁移”到底是什么?“电子迁移”属于电子科学的领域,在上世纪60年代初期才被广泛了解,是指电子的流动所导致的金属原子的迁移现象。在电流强度很高的导体上,最典型的就是集成电路内部的电路,电子的流动带给上面的金属原子一个动量,使得金属原子离金属表面四处流动,结果就导致金属导线表面上形成坑洞或土丘,造成永久的损害,这是一个缓慢的过程,一旦发生,情况会越来越严重,到最后就会造成整个电路的短路,整个集成电路就报销了。
“电子迁移”现象受许多因素影响,其中一个是电流的强度,电流强度越大,“电子迁移”现象就越显著。纵观集成电路的发展史,我们可以发现,为了把集成电路(如CPU)的核心缩小,必须把线路做得更细更薄,那么,线路的电流强度就会变得很大,所以电子的流动所带给金属原子的动量就明显提高,金属原子就容易从表面离而四处流窜,形成坑洞或土丘。另外一个因素就是温度,高温有助于“电子迁移”的产生,我们已经知道超频会产生大量的热,使CPU温度升高,从而引发“电子迁移”现象,而为了超频,我们通常会提高电压,如此一来,产生的热会更多。然而我们必须明白的是,并不是热量直接伤害CPU,而是热量所导致的“电子迁移”现象在损坏CPU内部的芯片。很多人说的CPU超到烧掉,其实严格来说,应该是高温所导致的“电子迁移”现象所引发的结果。为了防止“电子迁移”现象的发生,这就是为什么我们要把CPU的表面温度维持在50°C以下的原因所在。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)