电源规范有哪些

电源规范有哪些,第1张

电源规范有哪些

ATX电源规范是1995年Intel公司制定的主板及电源结构标准,ATX是英文(AT Extend)的缩写。下面是我收集的电源规范相关知识,欢迎阅读!

从P4开始,电源规范开始使用ATX 12V 1.0版本,它与ATX 2.03的主要差别是改用+12V电压为CPU供电,而不再使用之前的+5V电压。这样加强了+12V输出电压,将获得比+5V电压大许多的高负载性,以此解决P4处理器的高功耗问题。Intel在2003年4月,发布了新的ATX 12V 1.3规范。新规范除再次加强电源的+12V输出能力外,为保证输出线路的安全,避免损耗,特意制定了单路+12V输出不得大于240VA的限制。同时新规范还为当时崭露头角的SATA硬盘提供了专门的供电接口。

2005年,随着PCI-Express的出现,带动显卡对供电的需求,因此Intel推出了电源ATX 12V 2.0规范。这一次,Intel选择增加第二路+12V输出的方式,来解决大功耗设备的电源供应问题。ATX 12V 2.0规范还将电源满载转换效率的标准提升至80%以上,进一步达到环保节能的要求,并再次加强了+12V的电流输出能力。在制订了ATX 12V 2.0规范后,Intel又在其基础上进行了ATX 12V 2.01、ATX 12V 2.03等多个版本的小修改,主要提高了+5VSB的电流输出要求。2006年5月起,Intel又推出了ATX 12V 2.2规范,相比之下,新版本并没有太大变化,主要是进一步提高了最大供电功率。

2007年4月3日,Intel发布了最新ATX12V 2.3标准,“沉寂”了一年之久的电源规范再次升级。此次Intel发布2.3标准,主要是针对Vista系统带来的硬件升级以及双核、多核处理器的功耗改变。ATX12V 2.3版规范更贴合当今主流需要,并与过往的电源规范有了较大的区别,而ATX12V 2.31版规范更为贴合当今主流应用,且在效能、环保以及节能等设计上也更为完善。因此我们有理由相信ATX12V 2.31版电源将会进入主流市场,并最终普及开来。除非主要配件功耗发生转变。

附:电源知识课件

开关电源的工作原理

我们通常所接触的、所用的电源中,许多都是开关电源。那么开关电源到底是什么呢?

这个要从电源的发展说起了。

最开始的时候,人们利用的是化学电源,主要是各种原电池。当然,哪个时候电力系统远没有现在这么发达重要。电源主要是供一些物理学家研究电现象使用。

之后,随着电磁转换的深入研究,实现了电-热、电-光、电-动等各种电到其他能量间的转换手段和理论逐步完善,化学电源已经无法满足应用了。于是基于发电机的动-电转换电源开始走上舞台。同我们今天普遍使用的交流电不同的是,起初人们是用直流发电机做电源的。爱迪生和他的同伙们成立了一个电力公司,就是架设的直流输电系统。但是,因为直流电不能方便的转换成各种电压,所以,输电线的电压等级不能过高,导致线路压降过大。当时最远输电不过几英里范围。由此,人们根据变压器原理提出交流输电系统,并迅速推广。有趣的是,当时爱迪生异常顽固的反对交流输电系统,甚至用高压交流电电死一条狗--以此来说明交流输电系统的不安全性。

到今天,电已经深入生产生活的各个角落。可以说,电是人类利用最广泛的二次能源。

由于技术原因,电网的频率通常是50/60HZ。飞机上是400HZ,普遍比较低。主要是因为当时的变压器主要利用铁心制造。而当时的冶金技术还不能制造出在高频下损耗低的材料。

随着半导体业的发展,对电源的.要求也越来越高。电压朝着低的方向发展,而体积重量要求也月来越苛刻。

最早采用开关电源的,应该是美国的阿波罗登月计划了。

由此而开启关于开关电源的研究与生产序幕。

在最初电子管时代,就有一些利用气体击穿效应制造的稳压管。属于现代稳压电源的鼻祖。然后也产生了利用电子三极管稳压的一些稳压装置。当时主要是给一些要求严格的电子管电路供电,如飞机的航电系统、雷达系统等等。

随着晶体管时代的到来,电子管电路走向没落。齐纳击穿二极管代替了电子稳压管,晶体三极管代替了电子管。大量线性稳压电路涌现出来,有简单的齐纳二极管稳压电路、射极跟随器、带负反馈调整的稳压电路等等。

但是由于调整管处于线性放大区域,管子两端的压降不能过小,否则电源波动会超出稳压能力。管子耗散的功率=管压降*管子电流(通常比输出电流略大一点点)是很可观的能量损失。并且产生了热需要很大的散热器。有些场合,需要高效率,有些场合需要高稳定性,有些场合又有体积要求(散热器受限制)或是密封等等。

于此,提出了开关电源电路。当时,开关电源电路或多或少的受到一些数字电路的启发。

因为在传统的电源里,体积重量最大的往往是变压器,而减小变压器的直接有效的手段就是提高电源频率。于是各种拓扑结构纷纷被提出。许多电路在今天依然在大量应用。

开关电源是利用半导体器件将直流电源调制成可以通过变压器传递的各种脉冲波形,并且频率远远高于电网频率,发这种高频电流通过体积重量都小很多的高频变压器传递,然后在重新整流滤波作为输出。

由于功率半导体只工作在开通(过饱和)和关断两种状态,故此称为开关电源,国内早期译做斩波电源。

当半导体器件工作在开通和关断状态时,其两端的UI乘积远远小于通常线性状态,所以损失的功率非常小。并且变压器的体积重量也很小,所用材料成本也小很多。

体积小,重量轻,输入电压范围大,效率高是其主要特点。

通过改变直流脉冲的频率、相位、宽度,出现了三种工作模式PFM( Pulse Frequency Munition)、PPM(Pulse Phase Modulation)、PWM(Pulse-Width Modulation )。

PFM模式应用的比较早,主要特点是工作频率比较高,所以功率密度大,开关工作于“软开关”状态。所谓软开关是指在半导体开关器件开通或关断前开关器件两端电压或电流处于0状态,此时关,则由于只有电压或电流,故其乘积--开关损耗为零,实际是一个很小值。所以器件工作时,并无多少热量产生,器件寿命得以延长。但是因为开关频率随负载变动,且范围比较大,故后级滤波器比较难设计,部分抵消了他的优势。并且器件的应力也比较大。

PPM模式是通过改变脉冲的相位来工作的。典型电路是各种移相全桥软开关电路。其特点是拓扑结构适合大功率变换,并且容易实现软开关特性。频率固定,控制相对容易。主要应用于各种高功率变换场合从几百到几十千瓦。

PWM模式是通过改变脉冲宽度实现稳压功能的。是目前应用最多,最广泛的一种模式。其特点是控制容易,拓扑选择多,控制电路多,频率固定。在几瓦到几千瓦的范围内都有应用,并且通过适当的辅助电路也可以实现ZC(V)T软开关。

所以,开关电源是指通过改变脉冲的频率、相位、宽度等参数实现稳压输出的一种电源。

下面我们从最基本的PWM电路来分析开关电源的工作状态。

左边是基本的BOOST电路(电感升压电路)右边是BUCK电路(电感降压)。升压电路通过电感将电压提升使输出电压大于输入电压。而右边电路是通过电感和电容将脉冲滤波得到输出,故电压低于输入电压。

下面分析几个工作步骤。

首先,根据稳态时电感电流是否连续(就是在一个开关周期内电感电流是否归零,若归零则不连续,也可以根据电容电压是否连续分类,不过通常没有这么做的。因为电压不连续的时候非常非常少见--电容电压通常都是负载电压,如果电容电压不连续则输出电压也将是脉冲波形就不是稳压电源了。)

先分析电感电流连续的情况(右上波形图)

1、T0前开关断开,电感释放先前存储的能量。电感电流下降。负载由电感和电容联合供电。

2、T0时刻开关管闭和,顶部电路的电流按标出的箭头方向流动。电感电流增加,电感储存能量。表达式为dE/dt=((dI/dt)*(dI/dt))*L)/2既ΔE=ΔI*ΔI*L/2,电容电压增加,存储能量,表达式为ΔE=ΔU*ΔU*C/2。(I电流(安培)L电感量(亨利)U电压(伏特)C电容量(法拉))

3、T1时刻,开关断开,电感释放先前存储的能量。电感电流下降。

4、T2时刻,开关闭合,同T0。

电感电流断续(右中波形图)

1、T0前开关断开,电感电流是0,负载由电容供电。

2、T0时刻,开关闭合,中上部电路的电流按标出的箭头方向流动。电感电流增加,电感储存能量。表达式为dE/dt=((dI/dt)*(dI/dt))*L)/2既ΔE=ΔI*ΔI*L/2,电容电压增加,存储能量,表达式为ΔE=ΔU*ΔU*C/2。(I电流(安培)L电感量(亨利)U电压(伏特)C电容量(法拉))

3、T1时刻,开关断开,电感释放先前存储的能量。电感电流下降。

4、T2时刻前,电感存储能量释放完毕,电流归零,负载由电容供电。

5、T2时刻,开关闭合,同T0。

右下是电感电流断续、电容电压断续的波形,大家自己分析。

这两个拓扑结构是基本的PWM拓扑,可以通过串联、并联等形式派生出许多拓扑结构。并且通过在适当的地方插入变压器来实现隔离拓扑。

本文将就开关电源设计中如何正确的选择工作频率分享设计技巧。

为您的电源选择正确的工作频率

为您的电源选择最佳的工作频率是一个复杂的权衡过程,其中包括尺寸、效率以及成本。通常来说,低频率设计往往是最为高效的,但是其尺寸最大且成本也最高。虽然调高频率可以缩小尺寸并降低成本,但会增加电路损耗。接下来,我们使用一款简单的降压电源来描述这些权衡过程。

我们以滤波器组件作为开始。这些组件占据了电源体积的大部分,同时滤波器的尺寸同工作频率成反比关系。另一方面,每一次开关转换都会伴有能量损耗;工作频率越高,开关损耗就越高,同时效率也就越低;其次,较高的频率运行通常意味着可以使用较小的组件值。因此,更高频率运行能够带来极大的成本节约。

图1.1显示的是降压电源频率与体积的关系。频率为100kHz时,电感占据了电源体积的大部分(深蓝色区域)。如果我们假设电感体积与其能量相关,那么其体积缩小将与频率成正比例关系。由于某种频率下电感的磁芯损耗会极大增高并限制尺寸的进一步缩小,因此在此情况下上述假设就不容乐观了。如果该设计使用陶瓷电容,那么输出电容体积(褐色区域)便会随频率缩小,即所需电容降低。另一方面,之所以通常会选用输入电容,是因为其具有纹波电流额定值。该额定值不会随频率而明显变化,因此其体积(黄色区域)往往可以保持恒定。另外,电源的半导体部分不会随频率而变化。这样,由于低频开关,无源器件会占据电源体积的大部分。当我们转到高工作频率时,半导体(即半导体体积,淡蓝色区域)开始占据较大的空间比例。

该曲线图显示半导体体积本质上并未随频率而变化,而这一关系可能过于简单化。与半导体相关的损耗主要有两类:传导损耗和开关损耗。同步降压转换器中的传导损耗与MOSFET的裸片面积成反比关系。MOSFET面积越大,其电阻和传导损耗就越低。

开关损耗与MOSFET开关的速度以及MOSFET具有多少输入和输出电容有关。这些都与器件尺寸的大小相关。大体积器件具有较慢的开关速度以及更多的电容。图1.2显示了两种不同工作频率(F)的关系。传导损耗(Pcon)与工作频率无关,而开关损耗(PswF1和PswF2)与工作频率成正比例关系。因此更高的工作频率(PswF2)会产生更高的开关损耗。当开关损耗和传导损耗相等时,每种工作频率的总损耗最低。另外,随着工作频率提高,总损耗将更高。

但是,在更高的工作频率下,最佳裸片面积较小,从而带来成本节约。实际上,在低频率下,通过调整裸片面积来最小化损耗会带来极高成本的设计。但是,转到更高工作频率后,我们就可以优化裸片面积来降低损耗,从而缩小电源的半导体体积。这样做的缺点是:如果我们不改进半导体技术,那么电源效率将会降低。

如前所述,更高的工作频率可缩小电感体积,所需的内层芯板会减少。更高频率还可降低对于输出电容的要求。有了陶瓷电容,我们就可以使用更低的电容值或更少的电容。这有助于缩小半导体裸片面积,进而降低成本。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8405154.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-16
下一篇 2023-04-16

发表评论

登录后才能评论

评论列表(0条)

保存