本届论有百余位程序委员会专家提供智力支持,将全面聚焦前沿技术及行业热点,力邀国内外知名专家、领军企业、行业精英代表深度参与,把脉产业商机,共促产业 健康 有序发展。
当前,国际上第三代半导体材料、器件已实现了从研发到规模性量产的成功跨越,并进入产业化快速发展阶段,在新能源 汽车 、高速轨道交通、5G通信、光伏并网、消费类电子等多个重点领域实现了应用突破。
未来5年将是第三代半导体产业发展的关键期,全球资本加速进入第三代半导体材料、器件领域,产能大幅度提升,企业并购频发,正处于产业爆发前的“抢跑”阶段。5G、AI、物联网、大数据等市场提速,新能源 汽车 、PD快充、5G和新型显示时代的来临,应用市场对第三代半导体的需求已经开始呈现出前所未有的增长趋势。
据论坛组委会透露,面对新一轮 科技 革命与产业变革创造的 历史 性机遇,本届论坛特别邀请到中国工程院院士、清华大学电子工程系罗毅教授,中科院院士、南昌大学副校长、论坛程序委员会联合主席江风益教授,中国工程院院士、全球能源互联网研究院院长汤广福,厦门大学校长、论坛程序委员会主席张荣教授,诺贝尔物理学奖得主、美国加州大学圣塔芭芭拉分校材料系教授中村修二(ShujiNakamura),瑞典皇家理工学院教授Carl-Mikael Zetterling,博世苏州 汽车 部件总经理、博世 汽车 电子中国区总裁Georges Andary,京东方 科技 集团显示与传感器件研究院院长、半导体技术首席科学家袁广才等来自第三代半导体领域的代表性专家们与业界同仁共话第三代半导体的发展和机遇。
除了开幕大会、本届论坛设有功率电子器件与应用论坛、射频电子器件与应用论坛、半导体照明与应用论坛、Mini/Micro-LED及其他新型显示论坛、超越照明论坛、材料与装备论坛、固态紫外器件与应用论坛、车用半导体创新合作峰会、第三代半导体产教融合发展论坛、电力电子标准与检测研讨会等超30场次论坛活动。聚焦第三代半导体功率电子技术、光电子技术、射频电子技术的国内外前沿进展;第三代半导体功率电子技术、光电子技术、射频电子技术的产业发展战略与机遇;第三代半导体材料相关技术与新一代信息技术、新能源 汽车 、新一代通用电源、高端装备等产业的相互促进与深度融合;产业链、供应链多元化与核心技术攻关等。
国际第三代半导体论坛与中国国际半导体照明论坛同时同地举办,同台汇力,相映生辉,放眼LED+和先进电子材料更广阔的未来。
论坛长期与IEEE合作。投稿的录取论文会被遴选在IEEE Xplore 电子图书馆发表,IEEE是EI检索系统的合作数据库。目前,论坛同期论文已开启征集,论坛长期与IEEE合作。投稿的录取论文会被遴选在IEEE Xplore 电子图书馆发表,IEEE是EI检索系统的合作数据库。
2021先进半导体技术应用创新展(CASTAS 2021)也同时招展中,欢迎业界人士的参与其中,对接资源,洽谈商机,共商产业发展大计。
半导体是什么?半导体有什么用?
半导体是什么?举个例子,我们都知道金属铜是导体,观察它的原子结构图就会发现它的最外层只有一个电子,我们把这个电子称为假电子。因为原子核与价电子之间的吸引力较小,所以一旦受到外力吸引,这个垫子就很容易脱离铜原子,成为一个自由电子,这也是同能够成为导体的主要原因。同理,观察绝缘体的原子结构就会发现他们通常拥有八个加电子及其稳定。顾名思义,半导体应介于二者之间。
那么它的原子结构又是怎么样的呢?观察元素周期表就可以发现,在导体和绝缘体的分界线附近的元素就是制作半导体的重要材料,硅元素当然是最有影响力的一个,观察原子结构图就会发现它的最外层有四个电子,要想达到平衡,不是舍弃四个垫子,就是在拉拢四个电子,而归原子在排列时巧妙地共享了上下左右四个电子,手拉着手,组成了稳定八电子结构,也就是共价键。
那么硅的导电性又从何而来呢?当温度大于绝对零度时,处于价带的电子就可能发生跃迁,变成自由电子,同时原来的位置上就会形成一个空穴,也就是说,归经体内会存在等量的自由电子和空穴,他们都可以起到导电的作用,这就是纯净半导体,也叫做本征半导体。它的结构虽然完美,但是想要增加半导体的导电能力,还需要掺杂其他元素。当我们把硅原子替换成五价磷原子时,就可以提高自由电子的浓度,得到N型半导体。
同理,如果用最外层只有三个电子的硼原子替换硅原子,提高空穴的浓度,就可以得到P型半导体,那么把这两种类型的半导体连接在一起会发生什么呢?N级的电子迫切的想扩散到P区,P区空穴拼命想要扩散到N区,这时就会形成一个由N指向P的内电场,阻止扩散进行,在二者达到动态平衡之后,就会在交界面形成一个空间电荷区,这就是PN结。
PN结具有单向导电性,我们常见的二极管便是利用这个特性制成的。而利用太阳光照射PN结,就会激发产生电子空穴,对经过界面层的电荷分离,就会形成一个由P指向N的光生电场,这就是光生伏特效应,也是太阳能电池的基本原理。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)