半导体魔角超晶格中的连续Mott跃迁
文章出处: Tingxin Li, Shengwei Jiang, Lizhong Li, Yang Zhang, Kaifei Kang, Jiacheng Zhu, Kenji Watanabe, Takashi Taniguchi, Debanjan Chowdhury, Liang Fu, Jie Shan, Kin Fai Mak. Continuous Mott transition in semiconductor moire superlattices. Nature 2021 , 597 , 350-354.
摘要: 随着电子相互作用的增加,Landau费米液体演化为非磁性Mott绝缘体是物理学中最令人困惑的量子相变之一。这一跃迁的邻近区域被认为是物质的奇异态,如量子自旋液体、激子凝聚和非常规超导。半导体魔角材料在三角形晶格上实现了高度可控的Hubbard模型模拟,通过连续调谐电子相互作用提供了一个独特的机会来驱动金属-绝缘体过渡(MIT)。在这里,通过电调节MoTe2/WSe2魔角超晶格的有效相互作用强度,作者观察到一个在每个单元晶胞固定填充一个电子的连续的MIT现象。量子临界的存在是由电阻的缩放塌缩、绝缘侧接近临界点时电荷隙的连续消失和金属侧发散的准粒子有效质量所支持的。作者还观察到磁化率在MIT的平稳演化,没有证据表明在Curie-Weiss温度约5%的范围内存在长程磁序。这表明在绝缘侧有大量的低能自旋激发,而在金属侧观察到的Pomeranchuk效应需进一步证实。作者的结果与二维连续Mott跃迁的普遍批判理论是一致的。
相互作用引起的电子局域化-Mott跃迁预计会发生在半填充的Hubbard模型中。当电子的动能(以带宽 W 为特征)远远超过其相互作用能(以现场库仑斥力 U 为特征)时,基态是具有明确定义的电子费米表面的金属。相反,当 U W 时,基态是带有电荷隙的绝缘体。当 U 和 W 具有可比性时,系统将经历一次MIT过程。尽管Mott和Hubbard的开创性著作广泛接受了这一观点,但人们对这种转变的本质仍知之甚少。在大多数材料中,过渡是一级驱动的,经常伴随着同时的磁性、结构或其它形式的有序。连续的MIT现象,表现出不对称的破坏,整个电子费米表面的突然消失和同时打开电荷穿过量子临界点,仍然是凝聚态物理的突出问题之一。尽管对这一主题进行了广泛的理论研究,但实验研究对象仍然很少。
连续的Mott跃迁通常受到几何挫折和降维的青睐,其中强量子涨落可以削弱甚至猝灭不同类型的有序。魔角二维过渡金属二卤族(TMDs)异质结构为Mott跃迁提供了理想的实验平台,该异质结构被认为实现了三角晶格Hubbard模式。该系统是高度可控的,允许独立调节填充因子和有效相互作用强度( U / W )。特别地,在场效应器件中,电子密度可以通过门控连续调谐。理论上,有效相互作用强度可以通过改变TMD层之间的转角来调整,转角决定了魔角周期,从而决定了带宽。这里作者演示了平面外电场连续调谐 U / W 。电场改变了两层TMD之间的电位差,进而改变了魔角电位差,主要改变了局域Wannier函数的大小和带宽。作者研究了在固定的半带填充时系统的电输运和磁性质作为有效相互作用的函数。
作者研究了具有空穴掺杂的近零取向的MoTe2/WSe2异质双层膜。两种TMD材料的晶格失配率约为7%。在零转角时,它们形成一个三角形的魔角超晶格,周期约为5 nm (图1a),对应于魔角密度约为5 1012 cm-2。在每个TMD单分子层中,带边位于具有双自旋谷简并的Brillouin区的K/K'点。用密度泛函理论(DFT)表征了弛豫零度取向MoTe2/WSe2异质双层膜的电子能带结构。它们具有I型能带排列,价带偏移量约为300 meV(传导和价带边缘均来自MoTe2)。图1d给出了两个平面外位移场 D 下的前两个魔角价带,这两个值减小了价带偏移。位移场对能带色散有很强的影响。对于足够大的场,第一个魔角频带的带宽随 D 迅速增加(图1e),支持带宽调谐MITs的可行性。两种材料的大晶格失配具有一些实际优势。由于魔角周期对零度附近的转角不敏感,异质结构不容易受到角度排列不均匀造成的失调的影响。与无序密度(约1011 cm-2)相比,较大的魔角密度或等效的掺杂密度在半填充时更有利于纯粹的相互作用驱动的MITs。最后,大掺杂密度有助于形成良好的电接触,以便在低温下进行传输测量。
作者用六方氮化硼(hBN)栅极介质和石墨栅极电极制作了MoTe2/WSe2异质双层材料的双栅场效应器件(图1a,1b)。位于顶部与底部的典型hBN的厚度分别为5 nm和20~30 nm。作者将器件按霍尔条几何形状进行图形化,并将4点片电阻降至300 mK。图1c显示器件1在300 mK时的方形电阻 R 是两个栅极电压的函数。它可以转换成电阻作为填充因子 f 的函数,并使用已知的器件几何形状应用于平面外电场 E (顶部和底部电场的平均值)。两个显著的电阻特征分别对应于 f = 1和2,其中 f = 1表示每个魔角晶胞有一个空穴,即魔角价带的一半被填满。在足够大的应用领域,它们都变成金属。 f = 2时的MIT在一个更小的场。它的机理不同于 f = 1时的Mott跃迁。应用的磁场关闭第一和第二魔角带之间的间隙,并诱导从带绝缘体到补偿半金属的过渡。它对Mott绝缘状态没有明显的影响。
图2a说明了典型电场下电阻在70 K以下的温度依赖性。它们表现出两种行为。在临界磁场以下,电阻在冷却时增加。这是绝缘体的特性。电阻随热活化而变化。作者在图2b中提取了用于电荷传输的激活间隙Δ。当 E c从下面接近时,间隙大小从几十meV单调减小到几meV。它遵循幂律关系Δ | E - E c| νz ,其中指数 νz0.60 0.05 (图2c)。
在临界电场以上,电阻在低温至10 K范围内与 T 2有关。这是具有电子-电子umklapp散射的Landau费米液体的特征。作者用 R = R 0 + AT 2拟合低温电阻,其中 R 0为剩余电阻,根据Kadowaki-Woods扩展定律, A 1/2与准粒子有效质量 m ⁎成正比。当 E 从上面接近 E c时(图2d), A 1/2的电场依赖关系可以用幂律 A 1/2m * | E - E c|-1.4 0.1发散来很好地描述。结果表明,整个电子费米表面都对输运有贡献,由于MIT附近的量子涨落, m ⁎在 E c处发散。
电阻在较高温度下偏离 T 2的依赖关系,在温度 T *时达到最大值,并随着温度的进一步升高而减小。在这里,类绝缘行为遵循幂次定律,而不是激活温度依赖。 T *值在接近MIT时减小(图3c)。平方电阻可以超过Mott-Ioffe-Regel极限(图2a中水平虚线), h / e 2,其中 h 和 e 分别表示普朗克常数和基本电荷。这相当于一个比魔角时期小的平均自由路径,并暗示了“坏”的金属行为。
接下来作者演示了MIT附近电阻曲线的量子临界尺度塌缩。作者首先确定临界场的精确值,在该值处观察到 R ( T )的简单幂律依赖性。作者用临界磁场 R c( T )处的电阻使 R ( T )归一化。MIT附近的电阻曲线在温度随磁场变化的 T 0s缩放后坍塌成两个分支(图3a,3b)。顶部和底部分支分别代表绝缘和金属传输行为,它们在对数图中显示出约 R / R c = 1的反射对称。作者通过在绝缘侧的一个场将其与测量的电荷间隙匹配来确定 T 0的刻度。使用相同的 T 0s,不作任何调整,在与临界点等距离的金属侧缩放曲线。尺度参数 T 0在接近临界场时连续消失(图2b)。与电荷间隙相似, T 0遵循幂律关系 T 0 | E - E c| νz 呈,其指数为 νz0.70 0.05 (图2c)。图3a,3b也比较了同一装置在不同热循环后的两组测量结果,受到紊乱的影响,非常接近临界点。
作者在图3c中显示了|log( R / R c)|的场温相图。它揭示了被广泛观察到的量子临界的“扇形”结构。Widom线接近临界场的垂直蓝线。 T ⁎线及其镜像(对应|log( R / R c)| 0.45)为MIT附近的有限温度交叉设定了尺度,即量子临界区边界。在这个区域内有d R /d T <0,它与下面讨论的Pomeranchuk效应相关。
由于Mott绝缘体的基态和低能激发态是由磁相互作用决定的,因此作者研究了临界点附近的磁性能。平行于二维平面的磁场与自旋耦合较弱,这是由于TMDs中强的Ising自旋-轨道相互作用。作者利用磁圆二色性(MCD)表征了TMD魔角异质结构中空穴在平面外磁场 B 下的磁化强度。图4a显示了MCD在1.6 K时的几个电场的磁场依赖关系。在小的区域内,MCD随 B 线性增加,在 B * (符号)以上饱和。饱和场 B *在金属侧随电场的增大而增大,而在绝缘侧则随电场的增大而减弱(约4-5 T)。两侧的MCD饱和是由不同的机理引起的。在金属方面, B *与磁阻饱和场(图4c)很好地吻合,此时传输从金属过渡到绝缘。在绝缘方面, B *反映了磁相互作用能尺度。MCD可以转换为磁化,因为在饱和时,它的值对应于完全极化自旋的磁化强度。
然后由 B = 0附近的磁化率斜率得到磁化率 χ 。图4b显示了 χ -1在不同电场下的温度依赖性。对于1.6 K以下的所有电场,它都是平滑的。高温条件下,所有的数据都可以用负的Weiss常数θ 30-40 K的Curie-Weiss依赖关系 χ -1T - θ 描述(图中虚线)。这反映了Hubbard模型局域矩之间的反铁磁超交换相互作用,并揭示了在MIT附近两侧的磁相互作用能约为3 meV (与图4a中绝缘侧测量到的 B *一致)。图4b还显示了在低温下,靠近MIT的两侧的磁化率都很高。在金属方面,磁化率饱和发生在 T * (用箭头标记)附近。磁化率也显示出一个平滑的依赖于电场通过MIT到1.6 K (图4d)。
在低温下,系统在金属方面是Landau费米液体,由费米面附近重费米子的Pauli磁化率给出 χ 。在~ T *以上,系统进入非相干状态,易感性遵循Curie-Weiss依赖性。这与通过 T *加热时从金属(d R /d T >0)到类似绝缘的(d R /d T <0)传输的交叉相关。这种行为让人想起在氦-3中观察到的Pomeranchuk效应,其中局域化电荷的增加和局域矩的形成导致加热时自旋熵的增加。当塞曼能量超过重正化带宽( gμ B B *W *)时,相干准粒子也会被破坏。这张图与图4c中的磁阻数据一致,并且 gμ B B *与图3c中的热激发能( k B T *W *)吻合较好。其中 g 、 μ B和 k B分别表示空穴 g 因子(TMDs中g 11)、玻尔磁子和玻尔兹曼常数。与大多数二维电子系统相比,TMD的魔角超晶格中的空穴塞曼能量明显大于回旋能,这是由于较大的 g 因子和较重的带质量,而魔角平带又进一步提高了带质量。
在MIT附近,由于 U 和 W 均为数十meV,磁相互作用能(~3 meV)为系统的最小能量尺度。最低测量温度(磁和输运性质分别为1.6 K和300 mK)远远低于这个能量尺度。因此,没有任何自旋间隙迹象的 χ 对所有电场的平滑温度依赖关系(图4b)和 χ 在MIT的平滑演化(图4d)支持了两侧没有长程磁序。这些观察指出,MIT从费米液体到非磁性(或120度Néel低于1.6 K)Mott绝缘体在有限温度下具有广泛的自旋熵。这是预期的受挫晶格,并被Pomeranchuk效应进一步证实。此外,由于 m ⁎在金属方面发散, χ 在MIT上的平滑演化意味着Landau参数 F 0a是发散的;类似地,发散的 F 0s压缩率必须在MIT处消失。
综上所述,作者证明了MoTe2/WSe2的魔角超晶格在300 mK下的连续Mott跃迁,并在量子临界点附近进行了标度分析。MIT是由改变平面外电场引起的,该电场主要改变魔角电位深度,从而改变 U / W 。作者的结果,包括连续消失的电荷隙,发散的有效质量,贯穿MIT的恒定自旋磁化率,以及Pomeranchuk效应,都指向了一个清晰的例子,在连续MIT中,整个电子费米表面突然消失。此外,由于半带填充密度几乎比无序密度高两个数量级,无序仅在观测到的相互作用驱动的MIT中起扰动作用。在二维电子气体系统中,作者观察到的密度调谐的MITs与具有非常不同的能量尺度且没有晶格的二维电子气体系统具有显著的相似性,突出了跃迁的普遍性。未来对跃迁附近的输运和磁性特性的研究,特别是在较低温度下的研究,可能揭示物质的新奇异态,如量子自旋液体。
事实上,碳基半导体晶体管最先是由美国与荷兰科学家在1998年制造出来的,截止到2006年之前,我国在碳纳米管晶体管上并没有明显的建树。可以说,我国对碳纳米管晶体管的研究开始于2000年,7年之后才制备出了性能超越硅晶体管的N型碳纳米管晶体管。由此可知,国外的碳纳米管晶体管的研究要比我们早的多,但是到了今天我们与国外的差距远没有硅晶体管那么大,甚至有超越国外的趋势。
总体而言,国外对碳纳米管晶体管的研究,还是比我们要领先的。在2013年,MIT研究团队发表了由178个晶体管组成的只能执行简单指令的碳纳米管计算机。在2019年,MIT团队已能制造完整的由14000个碳纳米管晶体管组成的处理器了。而国内于2017年制造了基于2500个碳纳米管晶体管的处理器,整体性能相当于因特尔4004的水平。至于在2019年国内是否研发出了集成更多碳纳米管晶体管的处理器,目前尚未有报道。
由于碳纳米管较容易聚合在一起,所以MIT团队利用了一种剥落工艺防止碳纳米管聚合在一起,以防晶体管无法正常工作。要知道MIT团队制造的CPU主频只有1Mhz,早期的80386处理器的频率还有16Mhz,也不是说2019年碳纳米管制造的计算机性能,仅相当于1985年制造的硅晶体管处理器的性能,这差距就太大了。离实用化,还有较长的一段路要走。因为碳纳米管晶体管之间的沟道和碳纳米管晶体管的体积过大,导致碳纳米管晶体管可以容纳的电流较小,容纳得电荷较少。MIT制造的由14000个碳纳米管晶体管组成的处理器中的沟道宽度为1.5微米,与现在纳米级相距较远。也只有缩小碳纳米管晶体管的体积和减小沟道的距离,才可以提升整体性能。
但是国内于2017年,就研制出了栅长为5纳米的碳纳米管晶体管,近日又研发出了栅长3纳米的碳纳米管晶体管。可以说,国内在碳纳米管晶体管的小型化上走的比较远。在2007年左右,国内以碳纳米管晶体管制造的处理器主频就高达5Ghz,要比国外2019年制造等我处理器主频高的多。从国外的相关产品来看,其碳纳米管栅长究竟达到了何种地步,也说不准。只不过,由此可知,在碳纳米管的研发上,国内技术最起码不会差国外技术太多,很有可能是同步发展的。
【碳基半导体芯片真的能够助力我国芯片突破西方禁锢?从此不依赖ASML吗?】
我们应该看到了近期的新闻,2020年5月26日,北京元芯碳基集成电路研究院宣布,解决了长期困扰碳基半导体材料制备的瓶颈! 该消息一出,瞬间引起了我们的关注,于是我们扎堆的认为, 碳基半导体芯片一定能够助力我国芯片的突破,打破西方禁锢?从此不依赖ASML。
了解现状——西方国家垄断的是硅基材料,而这些硅基材料在我国,我们的优势非常的低;一些关键性的材料还是倍国家技术给垄断的。而此时,我们想要打破束缚,就必须要寻找新的思路,于是出现了我们期待的:碳基半导体能否替代未来的硅基材料呢?
其实,有专家表示,北由于碳分子结构稳定,很难像硅材料一样通过掺杂其他物质改变性能。因此,碳纳米管要实现产业化,尚有很长一段路要走。不过,如今,北京元芯碳基集成电路研究院的突破确实给了我们很大的希望。
碳基半导体具有成本更低、功耗更小、效率更高。如果能够打破硅基半导体材料的束缚,走出一条全新的碳基半导体路,我们的芯片发展可能更有意义。
其实,以碳纤维(织物)或碳化硅等陶瓷纤维(织物)为增强体,实际上,我们熟知的石墨烯,生物碳以及碳纳米管等等都属于碳基材料。因此,想要碳基材料真正的运用与我们的实际,确实还是有一段路走,可是我们也已经进了一步了。
在芯片处理中, 碳基技术芯片 速度提升,功耗降低,未来更能够运用于多种领域,比如国防,气象,以及我们现在急需要解决的手机芯片,计算机芯片问题。这里我们得知道,相比国外技术, 我国对于碳基技术研究时间早,目前的技术是基于二十年前彭练矛院士提出的无掺杂碳基CMOS技术发展而来。
因此,我们不担心倍国外的技术给限制,因为我们的技术具有前瞻性,确实我们的芯片技术目前还是受限制,特别是ASML的光刻机,因为缺乏技术,在工艺制程方面受到制约。
因此,我们猜测的是,碳基材料未来很有可能打破ASML光刻机的束缚,打破欧美国家芯片的束缚,打造属于我们的芯片技术。
谢谢您的问题。碳基芯片在全球范围内还在朝量产迈进。
碳基芯片目前处于实验室阶段。 IBM和英特尔已经碳基在理论进行了多年的 探索 ,英特尔无果而放弃。IBM与英特尔退而求其次,用的是“掺杂”工艺制备碳纳米管晶体管。在国内,彭练矛和张志勇教授团队在半导体碳碳基半导体材料制备方面取得了研究重大进展,已经领先于全球,但也只是朝产业化进一步迈进。
实验室的成果离现实还很远 。全球碳基芯片真正要实现落地、商品化,除了雄厚的资金,必须要有现有的芯片兼容,直接借用现有半导体产业流程工艺,就可以大大加快碳基芯片产业化进程。
碳基技术需要企业参与 。北京碳基集成电路研究院以前在碳基技术上走在了前列,未来10年发展至少需要20亿元研发投入,这需要企业产研对接,需要企业认识其中的价值。阿里巴巴、腾讯都计划投入数千亿元用于新基建,参与到云服务和芯片全线布局,希望这样的 科技 龙头企业参与“碳基”集成电路,有助于缩短国内碳基技术的商用时间,站在全球视角, 科技 企业及早介入非常重要。
欢迎关注,批评指正。
首先,国外的研究并没有啥进展,因为没有企业投钱,高通的芯片利润这么高,谁会把大把的钱投到一个还不知道成不成功的项目上?
处于 探索 期,技术还远不成熟,距成熟产品路还很远。
背景
如今,我们身边的各种电子产品,例如智能手机、笔记本电脑、可穿戴设备等,几乎都离不开电池供电。然而,电池却存在着使用寿命有限、续航能力有限、需要反复充电、安全隐患等问题。因此,电池也成为了影响现代电子产品性能与用户体验的关键因素之一。
为此,科学家们一直在积极研发让电子产品摆脱电池的新型供电方案。之前,笔者也为大家介绍过许多这方面的案例。接下来,让我们先来看几个经典案例:
(一)美国华盛顿大学发明的全球首款无需电池的手机,能从周围环境中的无线电信号或者光线中获取几微瓦的能量,保证正常手机通话。
(二)美国哈佛大学维斯生物启发工程研究所和约翰·保尔森工程和应用科学学院的科研人员团队创造出一种无需电池的折纸机器人,它能够通过磁场,无线地提供能量和进行控制,展开可重复的复杂运动。
(三)中国科学院、重庆大学、美国佐治亚理工学院、台湾 科技 大学等机构的科研人员组成的团队,在中华传统剪纸艺术启发下,开发出一种轻量的、剪纸式样的摩擦电纳米发电机(TENG),能采集人体运动的能量,为电子产品供电。
(四)美国密歇根州立大学的科研人员开发出由铁电驻极体纳米发电机(FENG)组成的柔性设备,让电子设备直接从人体运动中采集能量。
创新
今天,笔者要为大家介绍一项让电子产品摆脱电池的新科研进展。
近日,美国麻省理工学院联合其他科研机构(马德里理工大学、美国陆军研究实验室、马德里卡洛斯三世大学、波士顿大学、南加利福尼亚大学)开发首个能将WiFi信号的能量转化为电力的完全柔性设备,它可以为电子产品供电。
能将交流变化的电磁波转化为直流电的设备被成为“整流天线”。在《自然(Nature)》期刊上发表的论文中,研究人员们演示了一种新型整流天线。
技术
该整流天线采用了一个柔性射频(RF)天线,以交流变化的波形捕捉电磁波(包括携带WiFi信号的那些)。然后,这个天线被连接至一个由仅为几个原子厚度的“二维半导体”制成的新型器件。这种交流信号传送到半导体中,被半导体转化为直流电压,而直流电压可用于为电子电路供电或者为电池充电。
通过这种方式,无需电池的设备被动地捕捉无处不在的WiFi信号,并将其转化为有用的直流电源。更进一步说,该设备是柔性的,并能通过“卷对卷(roll-to-roll )“工艺制备,从而可以覆盖非常大的面积。
所有的整流天线都依赖一个称为“整流器”的元件,这个元件将交流输入信号转化为直流电源。传统的整流天线将硅或者砷化镓用于整流器。这些材料可以覆盖WiFi频段,可惜它们是刚性的。尽管采用这些材料制造小型器件相对便宜,但用它们覆盖大面积,例如建筑物与墙壁的表面,成本过高。长期以来,研究人员们一直在尝试解决这些问题。但是目前所报告的柔性天线很少工作在低频率下,并且无法捕捉与转化千兆赫频率的信号,然而大多数相关的手机和WiFi信号都处于这个频率。
为了构造他们的整流器,研究人员们采用了一种称为“二硫化钼(MoS2)”的新型二维材料。它只有三个原子的厚度,是全球最薄的半导体之一。MoS2 可用于构造柔性的半导体元器件,例如处理器。
这么做时,团队利用了二硫化钼的一种“奇特”行为:当接触特定的化学物质时,材料的原子会重新排列,表现得如同开关一样,产生一种从半导体到金属材料的相变。这种结构也称为“肖特基二极管”,它是利用金属与半导体接触形成的“半导体-金属结”原理制作的。
论文第一作者、电子工程与计算机博士后 Xu Zhang(不久将成为卡耐基梅隆大学的助理教授)表示:“通过将 MoS2 设计成二维的半导体-金属结,我们构建出了原子薄度、超高速的肖特基二极管,它可以同步减少串联电阻与寄生电容。”
在电子器件中,寄生电容是一种不可避免的情况。这种情况下,特定的材料存储少量的电荷,将使电路速度变慢。因此,寄生电容越低,整流器速度就越快,运行频率也越高。研究人员们设计的肖特基二极管中的寄生电容,比目前最先进的柔性整流器中的寄生电容,要小一个数量级。因此,这种二极管的信号转化速度更快,可采集并转化10GHz的无线信号。
Zhang 表示:“这种设计将带来一种完全柔性的设备,它快到可覆盖我们日常使用的电子器件的大多数射频频段,例如WiFi、蓝牙、蜂窝LTE等。”
研究人员所报告的工作,为将WiFi转化为电力的其他柔性设备提供了蓝图,这些柔性设备具备足够大的输出和效率。根据WiFi输入信号的输入功率,目前设备的最大输出效率约为40%。在典型的WiFi功率等级下,MoS2 整流器的能量效率约为30%。相比而言,目前最佳的硅和砷化镓整流天线(由更加昂贵的刚性材料硅和砷化镓制成)实现了差不多50%到60%的效率。
价值
论文合著者之一、麻省理工学院微系统技术实验室的 MIT/MTL 石墨烯器件与二维系统研究中心主任 Tomás Palacios 表示:“假如我们开发出的电子系统,能够环绕大桥,或者覆盖整个公路,或者覆盖办公室墙壁,并将电子智能带给我们周围的每个物体,那将会如何?你如何为这些电子产品供电?我们提出了一种新办法来为这些未来的电子系统供电,通过一种可简单大面积集成的方式采集WiFi的能量,为我们身边的每个物体带来智能。”
科学家们提出的这种整流天线的早期应用包括为柔性与可穿戴设备、医疗设备、“物联网”传感器供电。例如,对于主要的技术公司来说,柔性智能手机将是一个热门的新市场。在实验中,当研究人员们将器件放置到典型的WiFi信号功率级别(150微瓦左右)的环境中,它可以产生出40微瓦的功率。这个功率足以点亮一个简单的移动显示屏,或者为硅芯片提供电力。
论文合著者之一、马德里理工大学的研究员 Jesús Grajal 表示,另外一个可能的方案就是为植入式医疗设备的数据通信供电。例如,研究人员们正在开始开发能被患者吞服的药丸,并将 健康 数据发回给计算机诊断。
Grajal 表示:“理想情况下,你不会想用电池来为这些系统供电,因为如果电池泄露锂,那么患者可能会死亡。从环境中采集能量,为体内的这些小型实验室以及与外部计算机的数据通信提供电力,具有明显的优势。”
目前,团队正在计划打造更加复杂的系统并提升效率。
参考资料
【1】http://news.mit.edu/2019/converting-wi-fi-signals-electricity-0128
【2】Xu Zhang, Jesús Grajal, Jose Luis Vazquez-Roy, Ujwal Radhakrishna, Xiaoxue Wang, Winston Chern, Lin Zhou, Yuxuan Lin, Pin-Chun Shen, Xiang Ji, Xi Ling, Ahmad Zubair, Yuhao Zhang, Han Wang, Madan Dubey, Jing Kong, Mildred Dresselhaus and Tomás Palacios. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting . Nature, 2019 DOI: 10.1038/s41586-019-0892-1
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)