原子、分子和某些半导体材料,能分别吸收和放出一定波长的光或电磁波。根据固体能带论,半导体中电子的能量状态分为价带和导带,当电子从一个带中能态E1跃迁(转移)到另一带中的能态E2时,就会发出或吸收一定频率(υ)的光。υ与能量差(ΔE=E2-E1)成正比,即
υ=ΔE/h (Hz)
此式称为玻尔条件。式中h=6.626×10-34J·s。当发光二极管工作时,在正偏下,通常半导体的空导带被通过结向其中注入的电子所占据,这些电子与价带上的空穴复合,放射出光子,这就产生了光。发射的光子能量近似为特定半导体的导带与价带之间的带隙能量。这种自然发射过程叫作自发辐射复合(图1)。显然,辐射跃迁是复合发光的基础。注入电子的复合也可能是不发光的,即非辐射复合。在非辐射复合的情况下,导带电子失去的能量可以变成多个声子,使晶体发热,这种过程称为多声子跃迁;也可以和价带空穴复合,把能量交给导带中的另一个电子,使其处于高能态,再通过热平衡过程把多余的能量交给晶格,这种过程称为俄歇复合。随着电子浓度的提高,这种过程将变得更加重要。带间跃迁时,辐射复合和非辐射复合的两种过程相互竞争。有的发光材料表现为辐射复合占优势。
晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。1:空穴与电子带相等的电荷量,并且一个带正电一个带负电。 2:平衡,不动我在3给你讲原理就知道了 3:原理:PN结是由P型半导体和N型半导体构成的,这些我不讲,书上 有 定义。我重点说下形成过程。 P区载流子包括:多子(空穴)少子(电子) N区载流子包括:多子(电子)少子(空穴) P区多子(空穴)浓度高于N区,所以P区空穴向N区扩散,P区空穴扩散到N区与N区的电子中和,在P区留下不可移动的负离子,同理N区也留下不可移动的正离子。N区正离子与P区负离子之间有电势差,叫做势磊。电场的方向是N区指向P区的,阻碍多子的扩散,却有利于少子的运动,少子的运动叫做漂移,飘逸与扩散都产生电流。随着扩散的进行,势磊增大,漂移增强,扩散减弱,最后飘逸电流与扩散电流相等。达到平衡,流过PN结的净电流为0,达到平衡。 4:此时空间电荷区没有载流子了,叫做耗尽层。耗尽层中没有空穴。 但是P区和N区还是有空穴的,空穴在负离子附近运动,但强调不在空间电荷区。 5补充一点,万物都在运动中的,再说参照物不同,也不同。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)