Si3N4的简介

Si3N4的简介,第1张

氮化硅,固体的Si3N4是原子晶体,是空间立体网状结构,每个Si和周围4个N共用电子对,每个N和周围3个Si共用电子对,空间几何能力比较强的话你可以自己想象一下......大体上是和金刚石中的碳原子结构类似,不过是六面体又称六方晶体。

是一种高温陶瓷材料,硬度大、熔点高、化学性质稳定 工业上常常采用纯Si和纯N2在1300度制取得到。

氮化硅是由硅元素和氮元素构成的化合物。在氮气气氛下,将单质硅的粉末加热到1300-1400°C之间,硅粉末样品的重量随着硅单质与氮气的反应递增。在没有铁催化剂的情况下,约7个小时后硅粉样品的重量不再增加,此时反应完成生成Si3N4。除了Si3N4外,还有其他几种硅的氮化物(根据氮化程度和硅的氧化态所确定的相对应化学式)也已被文献所报道。比如气态的一氮化二硅(Si2N)、一氮化硅(SiN)和三氮化二硅(Si2N3)。这些化合物的高温合成方法取决于不同的反应条件(比如反应时间、温度、起始原料包括反应物和反应容器的材料)以及纯化的方法。

Si3N4是硅的氮化物中化学性质最为稳定的(仅能被稀的HF和热的H2SO4分解),也是所有硅的氮化物中热力学最稳定的。所以一般提及“氮化硅”时,其所指的就是Si3N4。它也是硅的氮化物中最重要的化合物商品。

在很宽的温度范围内氮化硅都是一种具有一定的热导率、低热膨胀系数、d性模量较高的高强度硬陶瓷。不同于一般的陶瓷,它的断裂韧性高。这些性质结合起来使它具有优秀的耐热冲击性能,能够在高温下承受高结构载荷并具备优异的耐磨损性能。常用于需要高耐用性和高温环境下的用途,诸如气轮机、汽车引擎零件、轴承和金属切割加工零件。美国国家航空航天局的航天飞机就是用氮化硅制造的主引擎轴承。氮化硅薄膜是硅基半导体常用的绝缘层,由氮化硅制作的悬臂是原子力显微镜的传感部件。 可在1300-1400°C的条件下用单质硅和氮气直接进行化合反应得到氮化硅: 3 Si(s) + 2 N2(g) → Si3N4(s) 也可用二亚胺合成 SiCl4(l) + 6 NH3(g) → Si(NH)2(s) + 4 NH4Cl(s) 在0 °C的条件下 3 Si(NH)2(s) → Si3N4(s) + N2(g) + 3 H2(g) 在1000 °C的条件下 或用碳热还原反应在1400-1450°C的氮气气氛下合成: 3 SiO2(s) + 6 C(s) + 2 N2(g) → Si3N4(s) + 6 CO(g) 对单质硅的粉末进行渗氮处理的合成方法是在二十世纪50年代随着对氮化硅的重新“发现”而开发出来的。也是第一种用于大量生产氮化硅粉末的方法。但如果使用的硅原料纯度低会使得生产出的氮化硅含有杂质硅酸盐和铁。用二胺分解法合成的氮化硅是无定形态的,需要进一步在1400-1500°C的氮气下做退火处理才能将之转化为晶态粉末,二胺分解法在重要性方面是仅次于渗氮法的商品化生产氮化硅的方法。碳热还原反应是制造氮化硅的最简单途径也是工业上制造氮化硅粉末最符合成本效益的手段。

电子级的氮化硅薄膜是通过化学气相沉积或者等离子体增强化学气相沉积技术制造的: 3 SiH4(g) + 4 NH3(g) → Si3N4(s) + 12 H2(g) 3 SiCl4(g) + 4 NH3(g) → Si3N4(s) + 12 HCl(g) 3 SiCl2H2(g) + 4 NH3(g) → Si3N4(s) + 6 HCl(g) + 6 H2(g) 如果要在半导体基材上沉积氮化硅,有两种方法可供使用: 利用低压化学气相沉积技术在相对较高的温度下利用垂直或水平管式炉进行。 等离子体增强化学气相沉积技术在温度相对较低的真空条件下进行。 氮化硅的晶胞参数与单质硅不同。因此根据沉积方法的不同,生成的氮化硅薄膜会有产生张力或应力。特别是当使用等离子体增强化学气相沉积技术时,能通过调节沉积参数来减少张力。

先利用溶胶凝胶法制备出二氧化硅,然后同时利用碳热还原法和氮化对其中包含特细碳粒子的硅胶进行处理后得到氮化硅纳米线。硅胶中的特细碳粒子是由葡萄糖在1200-1350°C分解产生的。合成过程中涉及的反应可能是: SiO2(s) + C(s) → SiO(g) + CO(g) 3 SiO(g) + 2 N2(g) + 3 CO(g) → Si3N4(s) + 3 CO2(g) 或 3 SiO(g) + 2 N2(g) + 3 C(s) → Si3N4(s) + 3 CO(g) 作为粒状材料的氮化硅是很难加工的——不能把它加热到它的熔点1850°C以上,因为超过这个温度氮化硅发生分解成硅和氮气。因此用传统的热压烧结技术是有问题的。把氮化硅粉末粘合起来可通过添加一些其他物质比如烧结助剂或粘合剂诱导氮化硅在较低的温度下发生一定程度的液相烧结后粘合成块状材料。但由于需要添加粘合剂或烧结助剂,所以这种方法会在制出的块状材料中引入杂质。使用放电等离子烧结是另一种可以制备更纯净大块材料的方法,对压实的粉末在非常短的时间内进行电流脉冲,用这种方法能在1500-1700°C的温度下得到紧实致密的氮化硅块状物。

碳化硅 密度3.2g/cm3,有黑碳化硅和绿碳化硅两个常用的基本品种,都属α-SiC。①黑碳化硅含SiC约98.5%,其韧性高于绿碳化硅,大多用于加工抗张强度低的材料,如玻璃、陶瓷、石材、耐火材料、铸铁和有色金属等。②绿碳化硅含SiC99%以上,自锐性好,大多用于加工硬质合金、钛合金和光学玻璃,也用于珩磨汽缸套和精磨高速钢刀具。此外还有立方碳化硅,它是以特殊工艺制取的黄绿色晶体,用以制作的磨具适于轴承的超精加工,可使表面粗糙度从Ra32~0.16微米一次加工到Ra0.04~0.02微米。

碳化硅由于化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好,除作磨料用外,还有很多其他用途,例如:以特殊工艺把碳化硅粉末涂布于水轮机叶轮或汽缸体的内壁,可提高其耐磨性而延长使用寿命1~2倍;用以制成的高级耐火材料,耐热震、体积小、重量轻而强度高,节能效果好。低品级碳化硅(含SiC约85%)是极好的脱氧剂,用它可加快炼钢速度,并便于控制化学成分,提高钢的质量。此外,碳化硅还大量用于制作电热元件硅碳棒。

碳化硅的硬度很大,具有优良的导热性能,是一种半导体,高温时能抗氧化。

氮化硅具有金刚石型三维晶格结构,所以具有高温热稳定性、抗热震性、化学稳定性和良好的电绝缘性及质硬性。氮化硅熔点1900℃,相对密度3.2~3.4,硬度1500~1900Hv,弯曲强度600~1000MPa,d性模量310GPa。在空气中加热到1450~1550℃仍稳定。易溶于氢氟酸,不溶于冷、热水及稀酸,对于浓硫酸和浓氢氧化钠溶液作用也极缓慢。

碳化钨是硬质合金家族的原料,纯的碳化钨不太常用,为黑色六方晶体,有金属光泽,硬度与金刚石相近,为电、热的良好导体。熔点2870℃, 沸点6000℃,相对密度 15.63(18℃)。碳化钨不溶于水、盐酸和硫酸,易溶于硝酸-氢氟酸的混合酸中。纯的碳化钨易碎,若掺入少量钛、钴等金属,就能减少脆性。用作钢材切割工具的碳化钨,常加入碳化钛、碳化钽或它们的混合物,以提高抗爆能力。碳化钨的化学性质稳定。

在碳化钨中,碳原子嵌入钨金属晶格的间隙,并不破坏原有金属的晶格,形成间隙固溶体,因此也称填隙(或插入)化合物。碳化钨可由钨和碳的混合物高温加热制得,氢气或烃类的存在能加速反应的进行。若用钨的含氧化合物进行制备,产品最终必须在 1500℃进行真空处理, 以除去碳氧化合物。碳化钨适宜在高温下进行机械加工,可制作切削工具、窑炉的结构材料、喷气发动机、燃气轮机、喷嘴等。

氮化物的材料没见过


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8433984.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-16
下一篇 2023-04-16

发表评论

登录后才能评论

评论列表(0条)

保存