第三代半导体材料碳化硅发展历程及制备技术

第三代半导体材料碳化硅发展历程及制备技术,第1张

本文说说碳化硅的那些事。 碳化硅材料的发展 历史 比较久远,1824年瑞典化学家Berzelius在人工生长金刚石的过程中发现了碳化硅SiC。1885年Acheson用焦炭和硅石的混合物以及一定量氯化钠在熔炉中高温加热,制备出了小尺寸碳化硅晶体,但存在大量缺陷。 碳化硅材料的应用始于20世纪初。1907年美国Round制造出第一个碳化硅发光二极管;1920年碳化硅单晶作为探测器用于早期的无线电接收机上。不过因为单晶生长难度较大,碳化硅在很长一段时间内没有很好的应用,到了1955年飞利浦发明了一种采用升华法制备高质量碳化硅的新方法即Lely法,碳化硅材料再次焕发生机。 七八十年代碳化硅的制备及应用实现重大突破。1978年前苏联科学家Tairov等人改良了Lely法,可以获得较大尺寸的碳化硅晶体。1979年第一个碳化硅发光二极管问世;1981年Matsunami发明了在硅衬底上生长碳化硅单晶的方法;1991年美国公司Cree采用升华法生长出碳化硅晶片并实现产业化。 目前碳化硅及其应用呈现出以下几个特点:第一是晶圆尺寸实现大尺寸化,Cree的6英寸碳化硅晶片实现产业化,并积极推进8英寸晶片的产业化。第二晶体缺陷密度不断下降,比如4英寸碳化硅单晶微管密度下降至0.1cm^-2以下,穿透性螺位错和基平面位错密度控制在10^2cm^-2。第三碳化硅基功率器件不断涌现,除了特斯拉和蔚来 汽车 在电动车上使用了SiC-MOSFET,还发展出了SBD、HMET等器件。当然第四点相比硅基半导体的奋起直追,中国在碳化硅第三代半导体上与国外发展水平基本持平,衬底方面天科合达等实现了4英寸的产业化和6英寸的技术突破,并积极向8英寸推进;山东天岳等公司拥有相应的外延生长技术。在器件制造上扬杰 科技 、士兰微等也积极推进碳化硅基功率半导体的产业化。 碳化硅材料的特性之一就是拥有超过200多种晶体结构,每一种结构对应的电学性能等存在一定差异。目前主要是六角4H、六角6H和菱方15R等,其中4H和6H实现产业化: 总体上相比氮化镓和硅等,碳化硅材料拥有最高的热导率、较高的带隙、电子迁移率和饱和电子速率等,可以制造能在高温、高压、更高功率和更高工作频率等情形下的器件。 在具体应用方面,碳化硅主要实现了以下应用:第一是碳化硅为衬底制备高亮度和超高亮度蓝绿InGaN铟镓氮LED;第二是实现了KV级高压MOSFET器件制造,比如罗姆半导体生产的1200V、35A的SiC-MOSFET;第三是用于300V到1200V甚至3300V等更高压的碳化硅基肖特基势垒管SBD的制造;第四是在半绝缘碳化硅衬底上制备氮化镓、铝镓氮AlGaN高电子迁移率晶体管HEMT;第五是在SiC-IGBT上有所突破,实现了P沟道IGBT的制造。 在碳化硅材料制备上,1955年飞利浦提出了Lely法,也称升华法。Lely法的基本原理是:在空心圆筒状石墨坩埚中(最外层石墨坩埚,内置多孔石墨环),将具有工业级纯度的碳化硅粉料投入坩埚与多孔石墨环之间加热到2500度,碳化硅在此温度下分解与升华,产生一系列气相物质比如硅单晶、Si2C和SiC2等。由于坩埚内壁与多孔石墨环之间存在温度梯度,这些气相物质在多孔石墨环内壁随机生成晶核。总的来说Lely法产率低,晶核难以控制,而且会形成不同结构,尺寸也有限制。 目前碳化硅材料制备多采用改进Lely法、高温CVD法和溶液法,其中以改进Lely法为主流。 改进Lely法也称物理气相传输法PVT,是前苏联科学家Tairov和Tsvetkov于1978年提出的。改进Lely法使用了工作频率10-100KHz的中频感应加热单晶炉,在生长过程中加入籽晶用于控制晶核和晶向: 在改进Lely法中碳化硅单晶生长主要经历低温高真空阶段、高压升温阶段、高压保温成核阶段、降压生长阶段、恒压恒温生长阶段和升压冷却阶段等六个阶段。当然在具体生长过程中,为了制备符合要求的碳化硅单晶,降低微管、位错密度等缺陷,会对籽晶的籽晶面等适当微调,在此不再展开。 碳化硅单晶有绝缘型、半绝缘型之分,按照掺杂类型还有P型掺杂和N型掺杂之分,无形中提升了碳化硅的制备难度。比如制备功率器件的是N型4H-SiC衬底,器件要求衬底电阻率小于20毫欧姆*厘米,制备低电阻率的N型4H-SiC常用高浓度N掺杂,但随着掺杂浓度提高,单晶中位错密度会升高。Kato等人提出的氮、铝共掺杂技术制备出了低电阻率的N型4H-SiC单晶,所用的单晶炉有两套加热系统,其中上部加热系统与普通Lely法相同,主要对SiC原料加热并为单晶生长提供合适的温度;下部加热系统为铝原料加热。这样通过对生长压力、温度等参数调整,可以实现有效的氮、铝共掺杂。 碳化硅的外延主要采用化学气相沉积CVD,以后再说。

台海网10月27日讯 据厦门日报报道 最近,“芯片”“IC”“光刻机”“三代半”等成为热门话题,在股票市场上,第三代半导体概念股也成为股市的热点。因此,我们有必要了解什么是第三代半导体?第三代半导体有哪些用途?对我国国民经济有什么意义?

半导体材料发展经历三个阶段

半导体是导电能力介于导体和绝缘体之间的一大类材料,半导体材料经历了三个发展阶段,不同阶段出现的材料被称为第一代、第二代、第三代半导体材料。

第一代半导体又称为“元素半导体”,典型如硅基和锗基半导体。20世纪50年代,锗在半导体中占主导地位,到了20世纪60年代逐渐被硅(Si)取代。目前硅的制造技术最成熟,应用最广,至今全球95%以上的半导体芯片和器件仍是用硅片生产出来的,广泛应用于信息处理和自动控制等领域。以集成电路(IC)为核心的现代微电子工业的发展,促进了全球整个IT信息产业的飞跃发展。硅材料自然界蕴藏量大,制造工艺成熟,成本低,人们对其性能最了解,在硅的表面很容易制备二氧化硅薄膜,非常适合于平面集成电路的制备,它在低压、大规模逻辑器件如CPU(电脑和手机的中央处理器)、人工智能芯片等电子和微电子领域具有较大的优势。但它工作频率不高、抗辐射性能不强、耐热和耐高压性能较差、光电性能差,因此在光电子领域和微波通信等应用方面受到局限。

20世纪80年代出现的第二代半导体是化合物半导体,包含有砷化镓(GaAs)、磷化铟(InP)以及许多其他Ⅲ-Ⅴ族化合物半导体(由元素周期表ⅢA族和ⅤA族元素组成的一类半导体材料。如砷化镓、磷化镓等),具有高频、抗辐射、低功耗的特性,主要用于制作高频微波、毫米波器件以及发光电子器件,广泛应用于移动通信、光通讯、LED发光器件、激光器、GPS导航等,它引发了光电产业、互联网和移动通信的革命。但是砷化镓、磷化铟等材料中的镓和铟属于稀缺资源,且制造工艺难度较大,大尺寸晶圆制备难,成本较高,虽然它们在高频方面有优势,但在耐高温、大电流、大功率方面性能并无优势,并且有的还带有毒性,对环境有影响,使得第二代半导体材料的应用具有一定的局限性。

21世纪初出现的第三代半导体包含氮化镓(GaN)、碳化硅(SiC)等化合物,又被称为宽禁带半导体,也被简称为“三代半”。它与前两代相比,具有更宽的禁带宽度、更高的击穿电压、更高的热导率、更高的电子饱和速率及更高的抗辐射能力,更适合于制作高温、高频、大功率及抗辐射器件,可满足现代电子技术对高功率密度、高击穿电压、高频率响应,以及耐高温、抗辐射等在恶劣环境下工作可靠性的要求,因此,被认为是最有发展前景的半导体材料。但是由于制造工艺难度大、成本高,基于三代半材料的器件品种还较少,目前占半导体市场中的份额还很小。

半导体这三个所谓的“代”,并不是像移动通信3G、4G、5G那样“后一代替代前一代”的关系,而是新一代根据其特性在某些应用领域挤占了前一代的部分市场份额,同时也拓展了新的市场。它们各有各的优势,之间的关系与其说是“代”的关系,倒不如说是“兄弟”关系。

全产业链布局第三代半导体

我国是全球最大的半导体消费国,但我国的半导体产业发展相对滞后,产品80%以上靠国外进口,特别是高端芯片产品几乎完全依赖进口。目前,加快发展半导体产业已成为我国的一项重要战略任务。相对于第一代、第二代半导体,第三代半导体目前国际上尚处于起步发展阶段,我国追赶国际先进水平机会更大。虽然目前它的市场比重还比较小,但我国随着5G基建、特高压、城际高铁和城市轨道交通、新能源 汽车 充电桩、大数据中心、人工智能、工业互联网等“新基建”的开展,未来对高频、高压、高功率密度、高能效器件的需求将加大,第三代半导体在这些方面有着无可比拟的优势。这些高端需求将带动第三代半导体技术进步和相关产品的开发,可以预见当需求拉动叠加成本降低,第三代半导体应用将迎来爆发性增长。

在2016年国务院发布的《“十三五”国家 科技 创新规划》中,第三代半导体被列为国家面向2030年重大项目之一。厦门市也把第三代半导体产业列入着力培育的具有发展潜力的十大未来产业。近年来在中央和各地政府出台政策的大力支持下,以及伴随新能源、智能制造、人工智能、5G通信等现代产业兴起所带来的庞大市场需求的推动下,一大批行业龙头企业近年来纷纷展开大规模投资,以期赢得发展先机。目前国内厂商在第三代半导体有全产业链的布局,产业已呈现快速发展势头。

夯实第三代半导体产业基础

虽然第三代半导体有着诸多优异的性能,但它也不是“万用神丹”。例如,智能手机中的处理器、电脑中的CPU等,从目前看不太有可能换为第三代半导体材料,至少在相当长的时间里第三代半导体还不可能完全取代前两代。

第三代半导体是以宽禁带为标志,决定了它的制造难度不可能比前两代低,暂且不说它能否制成各种功能的替代芯片,就是生产同样功能的器件,第三代半导体对制造工艺和设备的要求也不可能更低,成本也难以更低。

第三代半导体无论是单晶生长、外延层生长还是器件制造,目前处于领先地位仍是美国、欧洲、日本。况且许多基础的半导体工艺技术是相通的,无论哪一代半导体都需要,而在这些基础方面人家比我们强,想跳过或绕过这些薄弱点弯道超车或换道超车,是不太现实且有风险的。产业的发展有其自然规律,我们可以通过政策、资金等推动加快发展,而不应是光想着跳过、绕过或其他取巧的方式。要改变我们在半导体芯片方面的被动局面,光靠第三代半导体是不够的,更不是一朝一夕就能实现的,需要上游的材料和设备,中游的芯片设计、制造和封测,下游的应用等全产业链较长时期的共同努力,补上我们在半导体基础技术、工艺、设备等方面的短板,夯实基础,才有可能实现在第三代半导体突破性发展。(厦门市老科协 供稿)

第三代半导体在制程前端(材料取得、基板、磊晶)难度较高,在中下游的IC设计、制造生产/封测等阶段,则基本上能建立在既有硅产业基础上。

至于IC设计环节上,第三代半导体的设计程序与第一代半导体无太大差异,需进行规格定义、制程选择、架构选择、电路设计、可靠性分析等过程。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8434361.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-16
下一篇 2023-04-16

发表评论

登录后才能评论

评论列表(0条)

保存