一、网络拓扑的“主要”绘制工具
1、Powerpoint
适合中小型网络拓扑绘制;小巧方便,扩展性强,实用性强
适合讲演及方案演示、实施方案、实施报告等交付材料
使用范围较广
2、Visio
适合大型拓扑绘制;工业标准
功能强大、信息容量强大
便于打印、喷绘
二、不同网络环境的拓扑图案例
1、典型的园区网拓扑
2、典型的金融行业拓扑
3、工程环境测试拓扑
三、拓扑绘制步骤(建议)
1、首先在纸上花个草稿,熟练之后,做到拓扑在心中
2、通过辅助手段描绘拓扑框架,利用好线条和框架色块(可根据业务逻辑模块)
3、放置网络设备图标
4、标记信息元素
5、完善外围元素
6、完成整体绘制
四、绘制实例流程
首先看一下我们要绘制的实例拓扑图,如下图:
步骤1、用辅助线描述主要框架
步骤2、填充主干线路
步骤3、去掉辅助线
步骤4、放置主干网络设备
步骤5、添加信息点元素
步骤6、完成网络拓扑图
以上所谓步骤,只是提供一个拓扑绘制的大致思路,并非所有的拓扑都需要照搬照抄上述步骤来完成,有些拓扑异常复杂,更非简单几步就能完成。根据物理网络环境,结合客户业务逻辑结构,最终落地成逻辑的网络拓扑图,其实体现的是工程师对客户网络环境、网络需求、网络协议等的综合理解
下面介绍下网络拓扑图的绘制工具有哪些呢?在windows平台有microsoftvisio、microsoft powerpoint 、smartdraw、photoshop 、friendlypinger 、Pacestar LanFlow 、亿图(Edraw Max) 。在linux平台有dia diagram editor、graphviz。 绘制网络拓扑图不管是局域网还是广域网,其拓扑绘图的选择也要考虑到很多要素,首先网络要易于安装,又要易于扩展。要易于故障诊断和隔离。以便网络的主体在局部发生故障时仍能正常运行。网络的拓扑的选择还会影响转输媒体的选择和转输媒体访问控制方法的确定。这些因素又会影响各个站点的运行速度和网络硬件软件的接口的复杂性。 对于小型、简单的网络拓扑结构可能比较好画,因为其中涉及到的网络设备可能不是很多,图元外观也不会要求完全符合相应产品型号,通过简单的画图软件 (如Windows系统中的“画图”软件、HyperSnap等)即可轻松实现。而对于一些大型、复杂网络拓扑结构图的绘制则通常需要采用一些非常专业的绘图软件,如Visio、LAN MapShot等。 在这些专业的绘图软件中,不仅会有许多外观漂亮、型号多样的产品外观图,而且还提供了圆滑的曲线、斜向文字标注,以及各种特殊的箭头和线条绘制工具。在Visio2003的界面中,网络设备图元(从左上到右外依次为:集线器、路由器、服务器、防火墙、无线访问点、 MODEM和大型机),从中可以看出,这些设备图元外观都非常漂亮。当然实际中可以从软件中直接提取的图元远不止这些。这些都可以从其左边图元面板中直接得到。 Visio系列软件是微软公司开发的高级绘图软件,属于Office系列,可以绘制流程图、网络拓扑图、组织结构图、机械工程图、流程图等。它功能强大,易于使用,就像Word一样。它可以帮助网络工程师创建商业和技术方面的图形,对复杂的概念、过程及系统进行组织和文档备案。Visio2003 还可以通过直接与数据资源同步自动化数据图形,提供最新的图形,还可以自定制来满足特定需求。第一章 概 述
1.1 现代通信网基本构成
1.2 现代通信网的分类
1.3 现代通信网的主要特点
1.4 现代通信网的发展
1.1 现代通信网基本构成
从图1.1中我们可以看到,一个通信系统主要包括:信源、变换器、信道、噪声源、反变换器和信宿等六部分。
一、信源
信源是指发出信息的基本设施。在人与人之间进行通信时,信源指的就是直接发出信息的人。
二、变换器
变换器是将信源发出的信息按一定的目的进行变换的设备。通过变换器的变换,信源发出的信息被变换成适合在信道上传输的信息。
三、信道
信道是信息传输介质的总称。如前所述,不同的信源形式所对应的变换处理方式不同,与之对应的信道形式也会不同。通常的情况下,信道的划分标准有两种方式。
其一,信道按传输介质的不同可分为无线信道和有线信道。
其二,信道按传输信号形式的不同可分为模拟信道和数字信道。
四、反变换器
反变换器的工作过程是变换器的逆工作过程。
五、信宿
信宿是信息传输的终点,也就是信息的接收者。
六、噪声源
噪声源并不是人为实现的实体,但在实际通信过程中又是实际存在的。
通信的基本形式是在信源和信宿之间建立 一个传输(包括信息转移)信息的通道,即传输信道。
1.2 现代通信网的分类
现代通信网从各个不同的角度出发,可有各种不同的分类。常见的有:
(1)按通信的业务类型进行分类:电话通信网、电报通信网、电视网、数据通信网、计算机通信网(局域网、城域网和广域网)、多媒体通信网和综合业务数字网等。
(2)按通信的传输手段进行分类:长波通信网、载波通信网、光纤通信网、无线电通信网、卫星通信网、微波接力网和散射通信网等。
(3)按通信服务的区域进行分类:农话通信网、市话通信网、长话通信网和国际通信网或局域网、城域网和广域网等。
(4)按通信服务的对象进行分类:公用通信网、专用通信网等。
(5)按通信传输处理信号的形式分:模拟通信网和数字通信网等。
(6)按通信的活动方式分:固定通信网和移动通信网等。
1.3 现代通信网的主要特点
一、使用方便
功能强大的通信终端可为用户提供方便的使用条件。
二、安全可靠
现代通信网是社会的神经系统,已成为社会活动的主要机能之一,人们迫切希望现代通信网传递信息安全、可靠。
三、灵活多样
在现代通信网络中,双方既可以进行文字的交流,也可以交换和共享数据信息;既可以进行真诚的语音交流,也可以进行富有感情色彩的多媒体信息交流。
四、覆盖范围广
“海内存知己,天涯若比邻”,现代通信网拉近了人与人之间的距离。
1.4 现代通信网的发展
目前的通信网还存在许多问题,如容量有限、转移效率不高等。最重要的问题是:现有各种通信网在技术上过于个性化,即为保障实时通信,通信网采用了电路交换技术,因而不能充分有效地利用传输资源;为适应非实时数据通信,计算机通信网采用分组交换,这样又不能有效支持实时通信的要求;为适应电视点对面的广播性质,采用了单向传输技术,这又不利于实现互动和交互的双向通信。
一、现代通信网的发展过程
现代通信网的发展过程,大体可分为以下四个阶段。
1.第一阶段
现代通信网发展的第一阶段是19世纪中叶至20世纪40年代。从有线通信的角度来看,1844年有线电报的发明人莫尔斯(Samuel Morse)亲自从华盛顿向他的大学发出第一份电报;1854年美国军队在克里米亚战争中,建立了从司令部到下属部队的电报通信网;美国在内战中,联邦政府共架设了2.4万公里的电报线。
2.第二阶段
现代通信网发展的第二阶段是在20世纪50~70年代。晶体管、半导体集成电路和计算机等技术的发展,为通信网的发展起到了关键作用。
3.第三阶段
现代通信网发展的第三阶段大致在20世纪的70~80年代。1970年一根涂有二氧化硅的光导纤维的传输损耗达到了20dB/km,而1959年激光的发明导致光通信技术的起步。
4.第四阶段
现代通信网发展的第四阶段开始于20世纪80年代中期。1972年原CCITT(现为ITU-T)在G.703建议中初步定义了综合业务数字网(ISDN)的概念,1984年通过了ISDN的I系列建议,被称为ISDN发展的第一个里程碑。
二、现代通信网的发展趋势
1.网络业务数据化
100多年来,通信网的主要业务一直是电话业务,因而通信网一般称为电话通信网。传统的电话网设计都是以恒定对称的话务量为对象的,网络呈资本密集型,通信网容量与话务容量高度一致,业务和网络均呈稳定低速增长。
2.网络信道光纤化
鉴于光纤的巨大带宽、小重量、低成本和易维护等一系列优点,从20世纪80年代中期以来,通信网的光纤化一直是包括中国在内的世界各国通信网发展的主要趋势之一。
3.网络容量宽带化
随着数据业务量特别是IP业务量的飞速增长,主要有下面三大类应用对以电话业务量为主的传统通信网形成越来越大的压力:
(1)大量低延时数据业务应用(诸如Web浏览、LAN)需要高带宽。
(2)本身带宽窄,但通信量极大的业务应用(诸如电话、E-mail)也需要很高的网络带宽。
(3)固有的宽带应用(诸如图像、文件备用)更需要高带宽。
从核心网看,这几年SDH已成燎原之势,全世界已敷设了大约80万个独立网,其速率已高达10Gbit/s。
从长远看,仅有波分复用链路而不消除节点“电瓶颈”是无法真正实现通信网络容量宽带化的。
从接入网看,各种宽带接入技术争奇斗妍。ADSL和HFC的下行速率分别可达6Mbit/s(独占)和10Mbit/s(共享),而窄带PON(无源光网络)系统每户可获得2Mbit/s带宽,以ATM为基础的宽带PON(APON)的下行速率和上行速率分别可达622Mbit/s和155Mbit/s。
从现代通信网处理的具体业务上来看,随着信息技术的发展,用户对宽带新业务的需求开始迅速增加。光纤传输、计算机和高速数字信号处理器件等关键技术的进展,使宽带综合业务数字网(B-ISDN)的实现成为可能。
B-ISDN以灵活的速率为用户提供所希望的几乎所有业务,如高分辨率电视、音乐、可视电话、电视会议、视频图像、语音、电子函件、信息检索、远程教育和商务、高速数据传输、局域网互连等。
4.网络接入无线化
100多年来,无论是核心网,还是接入网,通信网基本上是有线通信业务的一统天下。只有在一些特殊的时期和特殊的地区,无线才有过短暂的辉煌。
5.网络传输分组化
具有100年历史的电路交换技术尽管有其不可磨灭的历史功勋和内在的高质量、严管理优势,但其基本设计思想是以恒定对称的话务量为中心,采用了复杂的分等级时分复用方法,语音编码和交换速率为64kbit/s。
分组化通信网具有传统电路交换通信网所无法具备的优势。
所谓分组化趋势目前主要是指IP化。
三、未来通信网管理新技术及其发展
近几年来,通信技术获得了迅猛的发展,通信网正向智能化、个人化、标准化发展,通信体制正由模拟网向全数字网发展,通信业务由单一的电话网向综合业务数字网(ISDN)方向发展。
1.网络管理综合化
现有的通信网一般是由许多独立管理的专用网和公用交换网互连组成的。它们大多采用各自的管理协议,互不兼容,这样导致了即使是在一个通信网中也有多个不同管理功能和服务设施与通信网管理系统的共存。
2.网络管理智能化
现代通信网已经发展到使网络的维护和 *** 作相当复杂的程度。本地中心受控于远地的监控中心,维护工作需要预先安排。网络维护对 *** 作人员提出了更高的要求:要会使用多种设备或网络实体;能够在隔离故障的同时协调多种资源的运作状态;拷贝大量的网络管理数据;识别各种事件的优先级,并快速反应;与其他 *** 作员或维护机构协作等。
对未来的网络管理来说,人工智能在现代通信网中的应用可以分成四类:
(1)在网络规划和设计(包括网络配置)中用在线分析、实时交互式专家系统可支持网络配置的动态修改和网络 *** 作中的故障检测、故障诊断和路由选择。
(2)诊断专家系统用于解释网络运行中差错信息、诊断故障,并提供处理建议。
(3)有人工智能的支持,将能实现用户可剪裁的服务特性,必要时可以轻松地重构服务配置。
(4)开发环境中的人工智能可以提高网络管理软件的质量。
3.网络管理的标准化
在选用通信网络设备时,应考虑它具有开放性,设备可以和其它设备兼容,并与其他用户连通。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)