PN结型半导体探测器

PN结型半导体探测器,第1张

在P型半导体空穴浓度较高,在N型半导体中电子浓度较高。两者结合在一起时,载流子将由高浓度区向低浓度区扩散,结果在两者附近形成一个结区,如图4-3-1所示。在结区基本上不存在自由载流子,只有施主和受主的离子,形成一个空间电荷区,N型一侧带正电,P型一侧带负电,构成一个内部电场,电场将阻止载流子继续扩散。如果在空间电荷区产生电离形成自由载流子,将立即把电子拉向N区,空穴拉向P区。不可能存在自由载流子,所以PN结区称为“耗尽层”。

当给PN外加电压,反向偏置时,即电源正端接N区,负极接P区,使空间电荷电场增强。

电子和空穴分别向正端和负端扩散,结果使“耗尽层”的宽度增大。

耗尽层即为探测器的灵敏区。在电压反向偏置下,耗尽层电阻率极高,相当于外加电压全加在耗尽层端;而P区和N区,自由载流子浓度很高,电阻率很低,相当于两个电极。

探测的射线进入灵敏区(耗尽层),产生电离,生成大量电子-空穴对。在电场作用下,电子和空穴分别迅速向正、负两极漂移、被收集,在输出电路中形成脉冲电信号。

金硅面垒半导体探测器就是以N型硅单晶作基片。将基片经酸处理后形成一氧化层,并在氧化层上镀一层金膜(约10 nm厚)。在靠金膜的氧化层具有P型硅特性,在基片背面镀镍接电源正极,金膜与铜外壳接触接电源负极,氧化层构成PN结耗尽层为金硅面垒探测器的灵敏区。目前金硅面垒探测器灵敏区厚度最大可做到2 mm。一般做成圆片状。

金硅面垒探测器,由于耗尽层厚度较薄,主要用于探测带电重粒子(如α、p等),亦可用作能谱测量,探测效率近于100%。也可用于β射线测量,对γ射线不灵敏。

几种常用金硅面垒探测器特性列于表4-3-1。

图4-3-1 PN结形成及其特性

表4-3-1 几种金硅面垒探测器主要特性

半导体原子规则排列成点阵状态。其最小单元叫作晶包,对锗来讲是小四面体,即金刚石结构。电子在晶体中为晶包所公有,形成能带结构,如图4-1-1所示。下面的能带称为价带,又称满带,平时被电子填满。中间是禁带(又称能隙)。上面是导带,平时没有电子(又称空带)。在价带以下还有更低能量的价带;在导带以上还有更高能量的导带。如果令Eg代表禁带宽度,Eg(金属)< Eg< Eg(绝缘体)。中间是半导体。在T=0时,理想的半导体是无杂质的半导体,导带全空(无电子),价带全满,被电子充满,加上电压不导电,电阻率非常大。在T≠0时,热激发使价带电子跳到导带,电子都处在导带底层,空穴均处在价带上层,并且处于动平衡状态,激发的电子—空穴对数目等于复合电子—空穴对数目。这样的半导体叫作本征半导体。从能带模型看,产生电子—空穴对,破坏了一个原子的共价键,Eg就是该结合键的结合能:

式中 Ni——电子密度,与温度有关;Pi——空穴密度,与温度有关;K——波尔兹曼常数;T——绝对温度,°K;Eg——能隙(禁带宽度);N ( T )——表示跃迁到某一状态的状态函数。

本征半导体:晶格结构完整,没有缺陷,没有杂质,电阻率极大,电子充满价带,绝对零度不导电。

本征半导体Si或Ge,掺杂少量的三价或五价元素,便改变了半导体的电性能。如五价的P、As加入到Si或Ge,P、As置换了Ge晶格点阵的Ge原子。因是五价,四个电子与周围Ge组成四组共价键,第五个电子与As结合不紧密,在热激发下跳到导带,留下正电荷在点阵上形成正电中心,这种杂质称为施主杂质。

如果掺杂少量三价B、Ga元素,去置换Si或Ge原子,它要从周围的Ge原子拉过来一个电子,组成四对共价键,即原来价带的一个电子跳入Ga固定能级形成负电中心,在价带中留下一个空穴,这种杂质称为受主杂质。施主杂质As给出一个电子,它一般靠近导带,也称为浅层杂质,距禁带0.03~0.05eV。受主杂质Ga接受一个电子,它一般靠近满带,也称为深层杂质。

单晶本身浓度为1022原子/cm3,这是本征半导体。杂质浓度为109~1010原子/cm3,为高纯锗作半导体探测器;杂质浓度为1011~1012原子/cm3,为特种半导体,作特种器件;杂质浓度为1012~1013原子/cm3,为一般半导体,作晶体管。

半导体分为N型半导体、P型半导体。N型半导体的电子是多数载流子,空穴是少数载流子;P型半导体的电子是少数载流子,空穴是多数载流子。P型半导体与N型半导体结合在一起,接触面形成PN结。

1.载流子的寿命载流子寿命てe( h )越长越好,大约为300μs~1ms。对于一块完整的晶体,载流子迁移率与温度有关。当温度高时,晶格受热运动产生光学、声学振动,载流子在迁移过程中,可能发生碰撞而受阻力。反之亦然。载流子的迁移率μ与温度t关系曲线如图4-1-2所示。由于晶格点阵有空位,造成附近区点阵错乱,称为点缺陷;由于点阵错乱,引起点阵变形,称为线缺陷;面与面之间点阵错乱,即位错乱,引起的点阵畸变,称为面缺陷。由于上述三种缺陷产生了凸凹部分,使点阵的结合能发生改变,出现了能量的高低变化。能量低的地方被称为陷井。当载流子通过陷井时,把载流子陷进去,使载流子暂停一下,当得到适当机会后它再跃出。由于掺杂质后,施主杂质产生了正电荷中心,受主杂质产生了负电荷中心。有电荷中心就产生了库仑电场,当载流子经过库仑电场时,使其暂停一下,当得到适当机会,把它放出,这种电荷中心称为捕捉中心。当被电荷中心捕捉后,被进一步陷落于价带中,与价带中的一个空穴复合,使载流子消失,这种现象称为复合。载流子的寿命与陷井、捕捉、复合三种现象有很大关系。一般情况下,温度低迁移率大,载流子寿命长。电子—空穴对由产生到消失,所用时间称为载流子寿命:

式中 てe(h)——载流子寿命;μe(h)——载流子迁移率;λ——载流子的平均自由行程;?——受陷落截面;P——陷井密度。

对于厚度为1cm的耗尽层,由于载流子的损失,能量谱加宽0.1%。

2.载流子的平均自由行程在没有外界电场的情况下,电子—空穴对从产生到消失,所走的平均距离,称为载流子的平均自由行程。载流子的平均自由行程与陷井的密度、掺杂质的种类有关。陷井密度小,受陷落截面小,λ大。氧和铜在锗晶体中特别容易扩散。如果本征半导体在空气中暴露1min,就产生一个氧化层使表面造成破坏,导致漏电流增大。对于半导体,漏电流越小越好,漏电流与半导体制造工艺有很大关系。晶体表面清洁,漏电流就小,一般小于10-10A。

载流子的浓度随时间变化:

式中 N0exp——初始载流子密度;Nt——载流子随时间变化密度。

3.载流子的收集率当γ量子入射到本征区后,γ量子由于能量损失,便产生一定数量的电子—空穴对,在外界电场的作用下,被收集到阳极,产生电流脉冲,这种收集如果是完全的话,电流脉冲幅度达到极大值。收集载流子多少称为收集率。收集率大小与半导体制造工艺、材料、体积大小,本征区宽度有关;从本质上讲,还取决于载流子迁移率、迁移长度、复合效应、陷井、捕捉中心密度大小;另外还和外加电场强弱有关。

4.对半导体探测器的要求气体探测器:在电离室中产生一个电子—离子对,大约需要能量ε≈30eV;半导体探测器:在晶体中产生一个电子—空穴对,大约需要能量ε≈3eV;闪烁体探测器:在光电倍增管光阴极上,产生一个光电子,大约需要能量ε≈300eV。

半导体探测器产生一个电子—空穴对需要的能量ε越小,能量分辨率越高。产生一个电子—空穴对需要能量/γ光子损耗能量= 0.3~0.35,γ光子损耗的能量主要消耗于晶格的光学、声学振动中。

5.载流子的漂移速度原子在外加电场作用下,在晶体内产生区域电场,电场有固定指向,电子—空穴对沿电场漂移,漂移速度ve( h):

式中 μe(h)——电子一空穴对漂移率或漂移本领,也叫载流子迁移率。

在室温情况下,电子的漂移率μe=1300cm2/(V?s),空穴的漂移率μ(h)=500cm2/(V?s);在不同电场下,μe(h)不是常数,在1000~2000V/cm时,μe(h)达到极大值,为1×107~2×107cm2/(V?s)。

μe(h)是温度T的函数,温度为0时,μe(h)达到极大值,因为0时晶格无振动,电子—空穴对不受任何碰撞,运动无阻力。晶体的任何参杂和晶格的不完整性都会引起μe (h)的减小。

材料的电阻率表示为:

用式(4-1-4)计算的Pi与实际测得的Pi相差极大,因为在实际上没有真正无杂质的纯晶体。

电子密度Ni与温度关系较大,随温度变化快。Ni与μe(h)比较,μe(h)随温度变化较慢一些:

6.几种材料的禁带度

禁带宽度越宽,晶体的使用温度越高,0.66eV(低温)→1.45eV(室温)→2.8eV(高温)。锗原子序数为32,碘化钠原子序数为11、53,因此两个探测器探测效率相差不多。

7.Si和Ge的基本特性参数

8.产生一个电子—空穴对需要的能量/γ量子损耗能量≈0.3~0.35的原因γ量子入射到本征区,它并不是只与弗米表面起作用,还与满带下面能量更低的带起作用,交给满带能量,是随机性的。这样激发出来的电子,其能量有高、有低。这样一来,能量高的就可以跳到导带,还有的跳到更高导带上去。这时它是不稳定的,放出能量回到低能导带上;处在低能价带上的空穴也是不稳定的,它也要逐渐回到价带的最表层(空穴移动是通过上一层满带的电子来补偿的),同时空穴也将放出能量。电子与空穴放出的能量大部分交给晶格,能量低的产生光学振动,能量高一点的作声学振动,所以点阵总是处于一种振动状态,γ量子损耗的能量不是完全都用于产生电子—空穴对,而是一大部分用于产生各种点阵的振动。产生一个电子—空穴对需要的能量/γ量子损耗能量≈0.3~0.35。产生一个电子—空穴对损耗的能量比禁带宽度大好几倍。

半导体探测器有两个电极,加有一定的偏压。当入射粒子进入半导体探测器的灵敏区时,即产生电子-空穴对。在两极加上电压后,电荷载流子就向两极作漂移运动﹐收集电极上会感应出电荷,从而在外电路形成信号脉冲。但在半导体探测器中,入射粒子产生一个电子-空穴对所需消耗的平均能量为气体电离室产生一个离子对所需消耗的十分之一左右,因此半导体探测器比闪烁计数器和气体电离探测器的能量分辨率好得多。半导体探测器的灵敏区应是接近理想的半导体材料,而实际上一般的半导体材料都有较高的杂质浓度,必须对杂质进行补偿或提高半导体单晶的纯度。通常使用的半导体探测器主要有结型、面垒型、锂漂移型和高纯锗等几种类型。金硅面垒型探测器1958年首次出现,锂漂移型探测器60年代初研制成功,同轴型高纯锗(HPGe)探测器和高阻硅探测器等主要用于能量测量和时间的探测器陆续投入使用,半导体探测器得到迅速的发展和广泛应用。

结型探测器  结构类似结型半导体二极管,但用于探测粒子时要加上足够的反向偏压。这时电子和空穴背着PN结移动而形成灵敏区。结型探测器一般采用硅单晶。这是因硅具有较大的禁带宽度,可用以保证在室温下工作时有足够小的漏电流。此外它的灵敏层厚度一般只有1毫米左右,故只适于探测穿透力较小的带电粒子。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8467950.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-16
下一篇 2023-04-16

发表评论

登录后才能评论

评论列表(0条)

保存