Nature: 半金属和单层半导体之间的超低接触电阻

Nature: 半金属和单层半导体之间的超低接触电阻,第1张

第一作者:Pin-Chun Shen, Cong Su, Yuxuan Lin, Ang-Sheng Chou

通讯作者:Pin-Chun Shen, Lain-Jong Li,Jing Kong

通讯单位: 麻省理工学院(MIT),台湾积体电路制造公司(TSMC)

先进的超越硅电子技术既需要通道材料,也需要发现超低电阻接触。原子薄的二维半导体具有实现高性能电子器件的巨大潜力。但是,到目前为止,由于金属引起的间隙态(MIGS),金属-半导体界面处的能垒(从根本上导致高接触电阻和较差的电流传输能力)限制了二维半导体晶体管。最近, 麻省理工学院(MIT)Pin-Chun Shen和Jing Kong,台湾积体电路制造公司(TSMC)Lain-Jong Li 等人 在国际知名期刊 “Nature” 发表题为 “Ultralow contact resistance between semimetal and monolayer semiconductors” 的研究论文。他们报道了半金属铋与半导体单层过渡金属硫化合物(TMDs)之间的欧姆接触,其中MIGS被充分抑制,TMD中的简并态与铋接触形成。通过这种方法,他们在单层MoS2上实现了零肖特基势垒高度,接触电阻为123欧姆微米,通态电流密度为1135微安/微米。就他们所知,这两个值分别是尚未记录的最低和最高值。他们还证明了可以在包括MoS2、WS2和WSe2在内的各种单层半导体上形成出色的欧姆接触。他们报道的接触电阻是对二维半导体的实质性改进,并接近量子极限。这项技术揭示了与最新的三维半导体相媲美的高性能单层晶体管的潜力,从而可以进一步缩小器件尺寸并扩展摩尔定律。

图1:半金属-半导体接触的间隙态饱和的概念

原文链接:

https://www.nature.com/articles/s41586-021-03472-9

有种材料是一种有机半导体,具有应用前景,一旦薄膜从晶体过渡到液晶状态,它们就会失去一些导电性。研究小组还发现了一种“第三相”,它不发生在块状材料中,与半导体的单分子层相对应。这种结构有利于电荷在薄膜间的传输,对微电子设计具有潜在的意义,其研究结果发表在《纳米研究快报》上。寡噻吩是很有前途的有机半导体,棒状分子可以在沉积的表面定向形成含有硫原子的碳氢化合物的循环,就像成堆的硬币一样。

相邻栈中的“硬币边”形成人字形,这种分子排列使电荷从一个分子转移到另一个分子。随着分子中硫代苯数量的增加,其导电性也随之增加,而这是以化合物的溶解度为代价。这些所谓噻吩基的最佳数目是4,为了增加溶解度,将己基片段接枝到共轭分子片段的末端。研究人员在真空反应器中溶解并蒸发了二己基四分之一噻吩(DH4T),并将其作为薄膜沉积在硅衬底上,研究继续用掠入射x射线衍射研究样品的晶体结构。

这项技术包括以非常小的角度将胶片暴露在x射线下,以最大限度地增加x射线在胶片中经过多次反射后所走的距离。否则,薄膜发出的信号会太微弱,无法与基片信号区分开来。衍射测量使研究小组能够识别沉积在衬底材料中的分子排列。最初,DH4T是高度结晶的,它的分子形成人字形,几乎垂直于底物。然而,一旦加热到85摄氏度,材料就会发生相变:分子排列发生变化,形成液晶相,薄膜的导电性下降,样品进一步加热到130℃,然后冷却到室温。

这在一定程度上恢复了材料的结晶度,从而恢复了导电性。在加热过程中,x射线衍射剖面出现了第三种结构,表现为与液晶相不对应的弱衍射极大值。之前的研究已经将这种最大值与DH4T等化合物单分子层相关联。有趣的是,这个“第三相”在70摄氏度时也观察到了。研究发现的单层膜结构有利于电荷沿薄膜平面的输运,对柔性电子应用具有重要意义。此外,在与DH4T结构相似的其他化合物薄膜中,也可能出现新发现的相,这种材料用于微电子学。

由于电荷主要在衬底附近的薄层中转移,研究发现表明,有必要考虑这种材料的纳米结构如何影响其导电性。迪米特里·伊万诺夫(Dimitri Ivanov)教授是MIPT功能有机和混合材料实验室的负责人,也是法国国家科学研究中心(CNRS)的研究主任,并对研究结果发表了评论:使用原位方法,如结构分析,同时测量样品的电性能,使我们能够深入了解材料中复杂相变的性质,并评估其在有机电子领域的实际应用潜力。

判断析氢反应催化剂性能好坏的标准

催化剂通常能使电解水的活化能大大降低,从而降低电解水的过电势。催化剂的优劣决定了电解水所需要的总电压以及电能转换为氢能的转化效率。比如,两根石墨电极组成的电解池通常需要大于2 V的电压才能产生氢气和氧气,因为石墨不是理想的催化剂,而两片不锈钢电极组成的电解池需要大约1.6-1.8V的电压就能产生氢气和氧气。研究新型的催化剂来增加能量转换效率是能源领域十分受关注的焦点。

在酸性环境中,铂是析氢反应的催化剂,几乎没有任何过电势以及非常小的塔菲尔斜率(电流增加10倍所需要的额外电压),是几乎理想化的催化剂,但是由于铂贵金属资源稀缺,科学家正在寻找一些廉价催化剂(过渡金属硫化物,碳化物以及磷化物)。氧化铱是析氧反应的催化剂,但是同样依赖于稀缺资源,同时由于高电位以及酸性环境,极少物质能能同时展现析氧反应催化活性和稳定性,所以目前为止还没有找到氧化铱的替代品。

在碱性环境中,铂和氧化铱依然是很好的催化剂,但是由于氧化物和氢氧化物在碱性环境的稳定性,能有更多低原子数过渡金属化物的选择。比如,镍基合金展现出了优良的析氢反应的催化活性和稳定性,镍铁基复合材料和一些钙钛矿材料展现出了优良的析氧反应的催化活性。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8473446.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-16
下一篇 2023-04-16

发表评论

登录后才能评论

评论列表(0条)

保存