什么是蕊片

什么是蕊片,第1张

什么是蕊片

芯片主要由北桥芯片(north Bridge)和南桥芯片(South Bridge)组成。其中北桥芯片是CPU与其他外部设备连接的桥梁,AGP、PCI、DRAM及南桥等设备都要通过不同的途径与它相连。北桥与南桥芯片共同组成了南北桥芯片组,南桥芯片主要用来与I/O设备及ISA设备相连,并负责管理中断及DMA通道,让设备工作得更顺畅。

1.主板芯片组结构

一直以来,主板芯片组都采用南北桥结构,但在主板芯片组中,也有多芯片结构和单芯片结构。

(1)传统的南北桥芯片组:首先来看北桥芯片,该芯片一般位于CPU插座与AGP插槽的中间,其芯片体型较大,加上其工作强度高,发热量也很可观,因此一般在该芯片的上面,还覆盖有一个散热片或者散热风扇。南桥芯片一般位于主板的下方、PCI插槽的附近,其芯片体型较小,加上其发热量不大,所以一般都没有加装散热片,我们可以直接查看其型号。

(2)Intel三芯片结构:南北桥结构是相当流行的主板芯片组架构,但值得一提的是,Intel从i810/i815系列芯片组开始,就不再以“南北桥”的形式来构成主板芯片组,取而代之的是ICH、GMCH、FWH等三块芯片组成主板芯片组。GMCH(Graphics &Memory Controller Hub,图形与内存控制中心)也就是传统意义的“北桥芯片”,它与传统的北桥一样,仍然负责支持和管理CPU、内存以及图形显示控制电路。随着技术的发展,如今Intel的GMCH体型都比较大,看起来跟一块CPU差不多,因此我们可以快速在主板上找到它。

ICH(Input-Output Controller Hub,输入/输出控制中心)芯片也就是传统意义上的“南桥芯片”,它负责支持PCI总线、IDE设备以及各种高速和传统的I/O接口和电脑系统能源控制等。用户仍然可以在PCI插槽附近找到这种ICH芯片。

FWH(Firmware Hub,固件中心)则是一块包括主板及显示系统BIOS、随机数发生器等电脑在内的综合芯片。

(3)SiS单芯片结构:在主板芯片组领域,单芯片具有更加紧密的应用集成和更高的性价比。目前在单芯片主板芯片组领域最活跃的厂商就是矽统(SiS)。SiS首款采用单芯片高整合性的芯片组是SiS630,在这款产品中首次将传统的南北桥芯片组整合为单一的芯片。从SiS630开始,SiS推出了多款单芯片的主板芯片组。对于采用这种芯片组的主板,我们只能在主板的中央看到一块芯片。

2.主板芯片组的作用

(1)提供对CPU的支持:目前CPU的型号与种类繁多,功能特点也不尽相同,更新速度更是惊人,但不管CPU如何发展,它都必须有相应的主板芯片组支持才行。当新类型的CPU出现后,往往新的主板芯片组也就随之出现。

在整个计算机系统中,CPU必须经过北桥芯片才能与内存、显卡等关键的系统设备进行通信。北桥芯片与处理器是一个相互依存、彼此匹配的关系——CPU的发展必定引起北桥芯片的变革,而没有相应的北桥芯片的良好支持,CPU也无法正常工作,或者说不能完全发挥其性能。

(2)提供对不同类型和标准内存的支持:我们平常所说的内存,主要用来存放各种现场的输入、输出数据,中间计算结果,以及与外部存储器交换信息和作堆栈用。它的存储单元根据具体需要可以读出,也可以写入或改写。由于内存由电子器件组成,所以只能用于暂时存放程序和数据,一旦关闭电源或发生断电,其中的数据就会丢失。

内存之所以能够正常地工作,离不开“内存控制器”(Memory Controller)的帮助,而这个关系到内存生死存亡的部件,就集成在主板芯片组的北桥芯片中。因此,北桥芯片对内存及CPU的影响是非常大的。另外,主板芯片组也决定了一块主板能够使用的内存类型。不同芯片组所支持的内存类型、最大容量不同,而这些都将影响整台电脑的性能及可扩展性。

(3)提供对图形接口的支持:显卡是目前发展速度最快的设备之一,而显卡的接口也随着技术的发展经历了AGP 2×、AGP 4×、AGP 8×等多种标准,而不管什么标准,都需要相应的主板芯片组的支持。

(4)对输出模式的支持:以最引人注目的硬盘传输模式为例,我们经常提到的Ultra DMA 33/66/100就是由主板芯片组决定的。同样的一块硬盘,连接在不同芯片组的主板上,其磁盘性能或多或少都有区别。

充电宝晶片与蕊片不是同一样东西。晶片为LED的主要原材料,晶片可以自由发光。芯片是一种固态的半导体器件,就是一个P-N结,它可以直接把电转化为光。晶片的组成要有砷铝镓铟磷氮锶这几种元素中的若干种组成。芯片的组成由金垫、P极、N极、PN结、背金层构成组成。

蕊片的作用

芯片,调节输出电压和该电压一致,保持输出电压稳定。开关电源芯片把开关电源所需要的控制逻辑都集成在芯片中,作用当然是简化电路设计、提高可靠性。

芯片是对充电过程进行管理,以合适的电流给电池充电,一般会经过涓流充电,恒流充电,恒压充电三个阶段,在充电器中IC起到充电检测和控制充电器工作的作用,当IC检测到被充电电池已充满时,IC会自动切断充电电源以保护充电电池不被过充。

半导体发光二极管基本知识和工艺简介

导 言

自从60年代初期GaAsP红色发光器件小批量出现进而十年后大批量生产以来,发光二极管新材料取得很大进展。最早发展包括用GaAs1-xPx 制成的同质结器件,以及GaP掺锌氧对的红色器件,GaAs1-xPx掺氮的红、橙、黄器件,GaP掺氮的黄绿器件等等。到了80年代中期出现了GaAlAs发光二极管,由于GaAlAs材料为直接带材料,且具有高发光效率的双异质结结构,使LED的发展达到一个新的阶段。这些GaAlAs发光材料使LED的发光效率可与白炽灯相媲美,到了1990年,Hewlett-Packard公司和东芝公司分别提出了一种以AlGaIn材料为基础的新型发光二极管。由于AlGaIn在光谱的红到黄绿部分均可得到很高的发光效率,使LED的应用得到大大发展,这些应用包括汽车灯(如尾灯和转弯灯等),户外可变信号,高速公路资料信号,户外大屏幕显示以及交通信号灯。近几年来,由于CaN材料制造技术的迅速进步,使蓝、绿、白LED的产业化成为现实,而且由于芯片亮度的不断提高和价格的不断下降,使得蓝、绿、白LED在显示、照明等领域得到越来越广泛的应用。

本课程将介绍LED的基本结构、LED主要的电学、光度学和色度学参数,并简单介绍LED制造主要工艺过程。

1. 发光二极管(Light Emitting Diode) 的基本结构

图<1>是普通LED的基本结构图。它是用银浆把管芯装在引线框架(支架)上,再用金线把管芯的另一侧连接到支架的另一极,然后用环氧树脂封装成型。

组成LED的主要材料包括:管芯、粘合剂、金线、支架

和环氧树脂。

1.1 管芯

事实上,管芯是一个由化合物半导体组成的PN结。由

不同材料制成的管芯可以发出不同的颜色。即使同一种材

料,通过改变掺入杂质的种类或浓度,或者改变材料的组

份,也可以得到不同的发光颜色。下表是不同颜色的发光

二极管所使用的发光材料。图<1>普通LED基本结构图

表<1> 不同颜色的发光二极管所使用的发光材料

发光颜色 使用材料 波长

普通红 磷化镓(GaP) 700

高亮度红 磷砷镓 (GaAsP) 630

超高亮红 镓铝砷 (GaAlAs) 660

超高亮红 镓铟铝磷 (AlGaInP) 625-640

普通绿、黄绿 磷化镓(GaP) 565-572

高亮绿 镓铟铝磷 (AlGaInP) 572

超高亮绿 氮化镓 ( InGaN ) 505-540

普通黄、橙 磷砷镓 (GaAsP) 590,610

超高亮黄、橙 镓铟铝磷 (AlGaInP) 590-610

蓝 氮化镓 ( InGaN ) 455-480

紫 氮化镓 ( GaN ) 400,430

白 氮化镓+荧光粉 460+YAG

红外 砷化镓 (GaAs) >780

图<2>是LED芯片图形。多数管芯正面为P面,连接到电源的正极,背面为N面,连接到电源的负极((GaAlAs芯片正面为N,背面为P;

以蓝宝石衬底的蓝、绿芯片P、N都在正面)。约在管芯

2/3高处,是P区和N区的交界处,称PN结。当有电

流通过PN结时产生发光,发光颜色取决于芯片材料,

而发光强度除了和材料有关外,还和通过PN结电流的

大小以及封装形式有关。电流越大,发光强度越高,但

当电流达到一定程度时出现光的饱和,这时电流再增加,

光强不再增加。

1.2 粘合剂

粘合剂的作用是把管芯粘在支架的反射杯上,一般使用导电银浆作为粘合剂,但对于蓝宝石衬底的芯片,因两个电极都在正面,因此使用绝缘胶作为粘合剂。银浆有单组份和双组份两种,目前使用的银浆大都为单组份银浆,这种银浆必须在低温下保存。粘合剂的性能对制品的可靠性及透光效果有直接影响,因此,必须根据实际情况,选择合适的粘合剂,并注意应在规定的期限内使用。

1.3 金线

金线的作用是把管芯的电极连接到支架上。主要有φ25μm和φ30μm两种规格,一般场合使用φ25μm金线,对于通过电流较大,可靠性要求较高的场合,则使用φ30μm金线。

1.4 支架

支架也即LED的外引线,一般使用基体为铁并镀银的支架,但有时为了提高制品的散热性能,则使用基体为铜的支架,当然,其材料成本也相应增加。

1.5 环氧树脂

LED采用环氧树脂作为封装材料。环氧树脂的性能对LED的光电特性尤其是可靠性有很大影响。它的选择必须充分考虑其可靠性、出光效果、工艺可行性及价格等。目前国内较常用的是台湾产的EP系列环氧树脂,而我公司外加工线则较多使用日本产的502、512、514等树脂。502树脂的流动性较好,但出光效果较差,512树脂的出光效果好,但粘度较高,工艺可行性差,可靠性也较差,514树脂的最大优点是耐热性能好,因此,常用于可靠性要求较高的制品。树脂分为主剂和硬化剂两部分,有的树脂在主剂中加入了颜料,因此得到了各种颜色的主剂,而大多数树脂主剂出厂时是一种淡蓝色的液体,封装时根据需要加入不同颜料,硬化剂是一种无色透明的液体。在树脂中加入适量的散射剂可以提高发光的均匀性,增大散射角,但同时法向发光强度降低。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8492568.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-17
下一篇 2023-04-17

发表评论

登录后才能评论

评论列表(0条)

保存