【历史沿革】
1926年汉斯·布什研制了第一个磁力电子透镜。1931年厄恩斯特·卢斯卡和马克斯·克诺尔研制了第一台透视电子显微镜。展示这台显微镜时使用的还不是透视的样本,而是一个金属格。1986年卢斯卡为此获得诺贝尔物理学奖。1938年他在西门子公司研制了第一台商业电子显微镜。
1934年锇酸被提议用来加强图像的对比度。1937年第一台扫描透射电子显微镜推出。
一开始研制电子显微镜最主要的目的是显示在光学显微镜中无法分辨的病原体如病毒等。1949年可投射的金属薄片出现后材料学对电子显微镜的兴趣大增。
1960年代投射电子显微镜的加速电压越来越高来透视越来越厚的物质。这个时期电子显微镜达到了可以分辨原子的能力。
1980年代人们能够使用扫描电子显微镜观察湿样本。1990年代中电脑越来越多地用来分析电子显微镜的图像,同时使用电脑也可以控制越来越复杂的透镜系统,同时电子显微镜的 *** 作越来越简单。
【简介】
电子显微镜由镜筒、真空装置和电源柜三部分组成。
镜筒主要有电子源、电子透镜、样品架、荧光屏和探测器等部件,这些部件通常是自上而下地装配成一个柱体。
电子透镜用来聚焦电子,是电子显微镜镜筒中最重要的部件。一般使用的是磁透镜,有时也有使用静电透镜的。它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与光学显微镜中的光学透镜(凸透镜)使光束聚焦的作用是一样的,所以称为电子透镜。光学透镜的焦点是固定的,而电子透镜的焦点可以被调节,因此电子显微镜不象光学显微镜那样有可以移动的透镜系统。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦。电子源是一个释放自由电子的阴极,栅极,一个环状加速电子的阳极构成的。阴极和阳极之间的电压差必须非常高,一般在数千伏到3百万伏特之间。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。
样品可以稳定地放在样品架上,此外往往还有可以用来改变样品(如移动、转动、加热、降温、拉长等)的装置。
探测器用来收集电子的信号或次级信号。
真空装置用以保障显微镜内的真空状态,这样电子在其路径上不会被吸收或偏向,由机械真空泵、扩散泵和真空阀门等构成,并通过抽气管道与镜筒相联接。
电源柜由高压发生器、励磁电流稳流器和各种调节控制单元组成。
电子显微镜的现状与展望摘要: 本文扼要介绍了电子显微镜的现状与展望。透射电子显微镜方面主要有:高分辨电子显微学及原子像的观察,像差校正电子显微镜,原子尺度电子全息学,表面的高分辨电子显微正面成像,超高压电子显微镜,中等电压电镜,120kV,100kV分析电镜,场发射q扫描透射电镜及能量选择电镜等,透射电镜将又一次面临新的重大突破;扫描电子显微镜方面主要有:分析扫描电镜和X射线能谱仪、X射线波谱仪和电子探针仪、场发射q扫描电镜和低压扫描电镜、超大试样室扫描电镜、环境扫描电镜、扫描电声显微镜、测长/缺陷检测扫描电镜、晶体学取向成像扫描电子显微术和计算机控制扫描电镜等。扫描电镜的分辨本领可望达到0.2—0.3nm并观察到原子像。
关键词:透射电子显微镜 扫描电子显微镜 仪器制造与发展
电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖。
电子与物质相互作用会产生透射电子,d性散射电子,能量损失电子,二次电子,背反射电子,吸收电子,X射线,俄歇电子,阴极发光和电动力等等。电子显微镜就是利用这些信息来对试样进行形貌观察、成分分析和结构测定的。电子显微镜有很多类型,主要有透射电子显微镜(简称透射电镜,TEM)和扫描电子显微镜(简称扫描电镜,SEM)两大类。扫描透射电子显微镜(简称扫描透射电镜,STEM)则兼有两者的性能。为了进一步表征仪器的特点,有以加速电压区分的,如:超高压(1MV)和中等电压(200—500kV)透射电镜、低电压(~1kV)扫描电镜;有以电子q类型区分的,如场发射q电镜;有以用途区分的,如高分辨电镜,分析电镜、能量选择电镜、生物电镜、环境电镜、原位电镜、测长CD-扫描电镜;有以激发的信息命名的,如电子探针X射线微区分析仪(简称电子探针,EPMA)等。
半个多世纪以来电子显微学的奋斗目标主要是力求观察更微小的物体结构、更细小的实体、甚至单个原子,并获得有关试样的更多的信息,如标征非晶和微晶,成分分布,晶粒形状和尺寸,晶体的相、晶体的取向、晶界和晶体缺陷等特征,以便对材料的显微结构进行综合分析及标征研究〔3〕。近来,电子显微镜(电子显微学),包括扫描隧道显微镜等,又有了长足的发展。本文仅讨论使用广泛的透射电镜和扫描电镜,并就上列几个方面作一简要介绍。部分透射电镜和扫描电镜的主要性能可参阅文献。
透射电子显微镜
1、高分辨电子显微学及原子像的观察
材料的宏观性能往往与其本身的成分、结构以及晶体缺陷中原子的位置等密切相关。观察试样中单个原子像是科学界长期追求的目标。一个原子的直径约为1千万分之2—3mm。因此,要分辨出每个原子的位置需要0.1nm左右的分辨本领,并把它放大约1千万倍。70年代初形成的高分辨电子显微学(HREM)是在原子尺度上直接观察分析物质微观结构的学科。计算机图像处理的引入使其进一步向超高分辨率和定量化方向发展,同时也开辟了一些崭新的应用领域。例如,英国医学研究委员会分子生物实验室的A.Klug博士等发展了一套重构物体三维结构的高分辨图像处理技术,为分子生物学开拓了一个崭新的领域。因而获得了1982年诺贝尔奖的化学奖,以表彰他在发展晶体电子显微学及核酸—蛋白质复合体的晶体学结构方面的卓越贡献。
用HREM使单个原子成像的一个严重困难是信号/噪声比太小。电子经过试样后,对成像有贡献的d性散射电子(不损失能量、只改变运动方向)所占的百分比太低,而非d性散射电子(既损失能量又改变运动方向)不相干,对成像无贡献且形成亮的背底(亮场),因而非周期结构试样中的单个原子像的反差极小。在档去了未散射的直透电子的暗场像中,由于提高了反差,才能观察到其中的重原子,例如铀和钍—BTCA中的铀(Z=92)和钍(Z=90)原子。对于晶体试样,原子阵列会加强成像信息。采用超高压电子显微镜和中等加速电压的高亮度、高相干度的场发射电子q透射电镜在特定的离焦条件(Scherzer欠焦)下拍摄的薄晶体高分辨像可以获得直接与晶体原子结构相对应的结构像。再用图像处理技术,例如电子晶体学处理方法,已能从一张200kV的JEM-2010F场发射电镜(点分辨本领0.194nm)拍摄的分辨率约0.2nm的照片上获取超高分辨率结构信息,成功地测定出分辨率约0.1nm的晶体结构。
2.像差校正电子显微镜
电子显微镜的分辨本领由于受到电子透镜球差的限制,人们力图像光学透镜那样来减少或消除球差。但是,早在1936年Scherzer就指出,对于常用的无空间电荷且不随时间变化的旋转对称电子透镜,球差恒为正值。在40年代由于兼顾电子物镜的衍射和球差,电子显微镜的理论分辨本领约为0.5nm。校正电子透镜的主要像差是人们长期追求的目标。经过50多年的努力,1990年Rose提出用六极校正器校正透镜像差得到无像差电子光学系统的方法。最近在CM200ST场发射q200kV透射电镜上增加了这种六极校正器,研制成世界上第一台像差校正电子显微镜。电镜的高度仅提高了24cm,而并不影响其它性能。分辨本领由0.24nm提高到0.14nm。在这台像差校正电子显微镜上球差系数减少至0.05mm(50μm)时拍摄到了GaAs〈110〉取向的哑铃状结构像,点间距为0.14nm。
3、原子尺度电子全息学
Gabor在1948年当时难以校正电子透镜球差的情况下提出了电子全息的基本原理和方法。论证了如果用电子束制作全息图,记录电子波的振幅和位相,然后用光波进行重现,只要光线光学的像差精确地与电子光学的像差相匹配,就能得到无像差的、分辨率更高的像。由于那时没有相干性很好的电子源,电子全息术的发展相当缓慢。后来,这种光波全息思想应用到激光领域,获得了极大的成功。Gabor也因此而获得了诺贝尔物理奖。随着Mollenstedt静电双棱镜的发明以及点状灯丝,特别是场发射电子q的发展,电子全息的理论和实验研究也有了很大的进展,在电磁场测量和高分辨电子显微像的重构等方面取得了丰硕的成果〔9〕。Lichte等用电子全息术在CM30
FEG/ST型电子显微镜(球差系数Cs=1.2mm)上以1k×1k的慢扫描CCD相机,获得了0.13nm的分辨本领。目前,使用刚刚安装好的CM30
FEG/UT型电子显微镜(球差系数Cs=0.65mm)和2k×2k的CCD相机,已达到0.1nm的信息极限分辨本领。
4、表面的高分辨电子显微正面成像
如何区分表面和体点阵周期从而得到试样的表面信息是电子显微学界一个长期关心的问题。目前表面的高分辨电子显微正面成像及其图像处理已得到了长足的进展,成功地揭示了Si〔111〕表面(7×7)重构的细节,不仅看到了扫描隧道显微镜STM能够看到的处于表面第一层的吸附原子(adatoms),而且看到了顶部三层的所有原子,包括STM目前还难以看到的处于第三层的二聚物(dimers),说明正面成像法与目前认为最强有力的,在原子水平上直接观察表面结构的STM相比,也有其独到之处。李日升等以Cu〔110〕晶膜表面上观察到了由Cu-O原子链的吸附产生的(2×1)重构为例,采用表面的高分辨电子显微正面成像法,表明对于所有的强周期体系,均存在衬度随厚度呈周期性变化的现象,对一般厚膜也可进行高分辨表面正面像的观测。
5、超高压电子显微镜
近年来,超高压透射电镜的分辨本领有了进一步的提高。JEOL公司制成1250kV的JEM-ARM
1250/1000型超高压原子分辨率电镜,点分辨本领已达0.1nm,可以在原子水平上直接观察厚试样的三维结构。日立公司于1995年制成一台新的3MV超高压透射电镜,分辨本领为0.14nm。超高压电镜分辨本领高、对试样的穿透能力强(1MV时约为100kV的3倍),但价格昂贵,需要专门建造高大的实验室,很难推广。
6、中等电压电子显微镜
中等电压200kV\,300kV电镜的穿透能力分别为100kV的1.6和2.2倍,成本较低、效益/投入比高,因而得到了很大的发展。场发射透射电镜已日益成熟。TEM上常配有锂漂移硅Si(Li)X射线能谱仪(EDS),有的还配有电子能量选择成像谱仪,可以分析试样的化学成分和结构。原来的高分辨和分析型两类电镜也有合并的趋势:用计算机控制甚至完全通过计算机软件 *** 作,采用球差系数更小的物镜和场发射电子q,既可以获得高分辨像又可进行纳米尺度的微区化学成分和结构分析,发展成多功能高分辨分析电镜。JEOL的200kV
JEM-2010F和300kV JEM-3000F,日立公司的200kV HF-2000以及荷兰飞利浦公司的200kV CM200 FEG和300kV CM300 FEG型都属于这种产品。目前,国际上常规200kVTEM的点分辨本领为0.2nm左右,放大倍数约为50倍—150万倍。
7、120kV\,100kV分析电子显微镜
生物、医学以及农业、药物和食品工业等领域往往要求把电镜和光学显微镜得到的信息联系起来。因此,一种在获得高分辨像的同时还可以得到大视场高反差的低倍显微像、 *** 作方便、结构紧凑,装有EDS的计算机控制分析电镜也就应运而生。例如,飞利浦公司的CM120
Biotwin电镜配有冷冻试样台和EDS,可以观察分析反差低以及对电子束敏感的生物试样。日本的JEM-1200电镜在中、低放大倍数时都具有良好的反差,适用于材料科学和生命科学研究。目前,这种多用途120kV透射电镜的点分辨本领达0.35nm左右。
8、场发射q扫描透射电子显微镜
场发射扫描透射电镜STEM是由美国芝加哥大学的A.V.Crewe教授在70年代初期发展起来的。试样后方的两个探测器分别逐点接收未散射的透射电子和全部散射电子。d性和非d性散射电子信息都随原子序数而变。环状探测器接收散射角大的d性散射电子。重原子的d性散射电子多,如果入射电子束直径小于0.5nm,且试样足够薄,便可得到单个原子像。实际上STEM也已看到了γ-alumina支持膜上的单个Pt和Rh原子。透射电子通过环状探测器中心的小孔,由中心探测器接收,再用能量分析器测出其损失的特征能量,便可进行成分分析。为此,Crewe发展了亮度比一般电子q高约5个量级的场发射电子qFEG:曲率半径仅为100nm左右的钨单晶针尖在电场强度高达100MV/cm的作用下,在室温时即可产生场发射电子,把电子束聚焦到0.2—1.0nm而仍有足够大的亮度。英国VG公司在80年代开始生产这种STEM。最近在VGHB5 FEGSTEM上增加了一个电磁四极—八极球差校正器,球差系数由原来的3.5mm减少到0.1mm以下。进一步排除各种不稳定因素后,可望把100kV STEM的暗场像的分辨本领提高到0.1nm。利用加速电压为300kV的VG-HB603U型获得了Cu〈112〉的电子显微像:0.208nm的基本间距和0.127nm的晶格像。期望物镜球差系数减少到0.7mm的400kV仪器能达到更高的分辨本领。这种UHV-STEM仪器相当复杂,难以推广。
9、能量选择电子显微镜
能量选择电镜EF-TEM是一个新的发展方向。在一般透射电镜中,d性散射电子形成显微像或衍射花样;非d性散射电子则往往被忽略,而近来已用作电子能量损失谱分析。德国Zeiss-Opton公司在80年代末生产的EM902A型生物电镜,在成像系统中配有电子能量谱仪,选取损失了一定特征能量的电子来成像。其主要优点是:可观察0.5μm的厚试样,对未经染色的生物试样也能看到高反差的显微像,还能获得元素分布像等。目前Leica与Zeiss合并后的LEO公司的EM912 Omega电镜装有Ω-电子能量过滤器,可以滤去形成背底的非d性散射电子和不需要的其它电子,得到具有一定能量的电子信息,进行能量过滤会聚束衍射和成像,清晰地显示出原来被掩盖的微弱显微和衍射电子花样。该公司在此基础上又发展了200kV的全自动能量选择TEM。JEOL公司也发展了带Ω-电子能量过滤器的JEM2010FEF型电子显微镜,点分辨本领为0.19nm,能量分辨率在100kV和200kV时分别为2.1μm/eV和1.1μm/eV。日立公司也报道了用EF-1000型γ形电子能量谱成像系统,在TEM中观察到了半导体动态随机存取存储器DRAM中厚0.5μm切片的清晰剖面显微像。
美国GATAN公司的电子能量选择成像系统装在投影镜后方,可对电子能量损失谱EELS选择成像。可在几秒钟内实现在线的数据读出、处理、输出、及时了解图像的质量,据此自动调节有关参数,完成自动合轴、自动校正像散和自动聚焦等工作。例如,在400kV的JEM-4000EX电镜上用PEELS得到能量选择原子像,并同时完成EELS化学分析。
透射电镜经过了半个多世纪的发展已接近或达到了由透镜球差和衍射差所决定的0.1—0.2nm的理论分辨本领。人们正在探索进一步消除透镜的各种像差〔20〕,在电子q后方再增加一个电子单色器,研究新的像差校正法,进一步提高电磁透镜和整个仪器的稳定性;采用并进一步发展高亮度电子源场发射电子q,X射线谱仪和电子能量选择成像谱仪,慢扫描电荷耦合器件CCD,冷冻低温和环境试样室,纳米量级的会聚束微衍射,原位实时分析,锥状扫描晶体学成像(Conical Scan Crystallography),全数字控制,图像处理与现代信息传送技术实现远距离 *** 作观察,以及克服试样本身带来的各种限制,透射电镜正面临着一个新的重大突破。
扫描电子显微镜
1、分析扫描电镜和X射线能谱仪
目前,使用最广的常规钨丝阴极扫描电镜的分辨本领已达3.5nm左右,加速电压范围为0.2—30kV。扫描电镜配备X射线能谱仪EDS后发展成分析扫描电镜,不仅比X射线波谱仪WDS分析速度快、灵敏度高、也可进行定性和无标样定量分析。EDS发展十分迅速,已成为仪器的一个重要组成部分,甚至与其融为一体。但是,EDS也存在不足之处,如能量分辨率低,一般为129—155eV,以及Si(Li)晶体需在低温下使用(液氮冷却)等。X射线波谱仪分辨率则高得多,通常为5—10eV,且可在室温下工作。1972年起EDAX公司发展了一种ECON系列无窗口探测器,可满足分析超轻元素时的一些特殊需求,但Si(Li)晶体易受污染。1987年Kevex公司开发了能承受一个大气压力差的ATW超薄窗,避免了上述缺点,可以探测到B,C,N,O等超轻元素,为大量应用创造了条件。目前,美国Kevex公司的Quantifier,Noran公司的Extreme,Link公司的Ultracool,EDAX公司的Sapphire等Si(Li)探测器都属于这种单窗口超轻元素探测器,分辨率为129eV,133eV等,探测范围扩展到了5B—92U。为克服传统Si(Li)探测器需使用液氮冷却带来的不便,1989年Kevex公司推出了可不用液氮的Superdry探测器,Noran公司也生产了用温差电制冷的Freedom探测器(配有小型冷却循环水机),和压缩机制冷的Cryocooled探测器。这两种探测器必须昼夜24小时通电,适合于无液氮供应的单位。现在使用的大多还是改进的液氮冷却Si(Li)探测器,只需在实际工作时加入液氮冷却,平时不必维持液氮的供给。最近发展起来的高纯锗Ge探测器,不仅提高了分辨率,而且扩大了探测的能量范围(从25keV扩展到100keV),特别适用于透射电镜:如Link的GEM型的分辨率已优于115eV(MnKα)和65eV(FKα),Noran的Explorer
Ge探测器,探测范围可达100keV等。1995年中国科学院上海原子核研究所研制成了Si(Li)探测器,能量分辨率为152eV。中国科学院北京科学仪器研制中心也生产了X射线能谱分析系统Finder-1000,硬件借鉴Noran公司的功能电路,配以该公司的探测器,采用Windows *** 作系统,开发了自己的图形化能谱分析系统程序。
2、X射线波谱仪和电子探针仪
现代SEM大多配置了EDS探测器以进行成分分析。当需低含量、精确定量以及超轻元素分析时,则可再增加1到4道X射线波谱仪WDS。Microspec公司的全聚焦WDX-400,WDX-600型分别配有4块和6块不同的衍射晶体,能检测到5B(4Be)以上的各种元素。该谱仪可以倾斜方式装在扫描电镜试样室上,以便对水平放置的试样进行分析,而不必如垂直谱仪那样需用光学显微镜来精确调整试样离物镜的工作距离。
为满足大量多元素试样的超轻元素,低含量,高速定性、定量常规分析的需求,法国Cameca公司长期生产电子探针仪,SX50和SXmacro型配备4道WDS及1道EDS,物镜内装有同轴光学显微镜可以随时观察分析区域。岛津公司最近生产的计算机控制EPMA-1600型电子探针,可配置2—5道WDS和1道EDS,试样最大尺寸为100mm×100mm×50mm(厚),二次电子图像分辨率为6nm。JEOL公司也生产了计算机控制的JXA-8800电子探针和JXA-8900系列WD/ED综合显微分析系统—超电子探针,可装5道X射线光谱仪和1道X射线能谱仪,元素分析范围为5B—92U,二次电子图像分辨率为6nm。
Noran公司下属的Peak公司最近发展了一种崭新的APeX全参数X射线光谱仪,与传统的机械联动机构完全不同,由计算机控制6个独立的伺服马达分别调节分光晶体的位置和倾角以及X射线探测器的X、Y坐标和狭缝宽度。配有4块标准的分光晶体可分析5B(4Be)以上的元素。罗兰圆半径随分析元素而变,可分别为170,180,190和200mm,以获得最高的计数率,提高了分析精度和灵活性。Noran公司还推出了称为MAXray的X射线平行束光谱仪,将最新的X光学研究成果——准平行束整体X光透镜置于试样上的X射线发射点和分析晶体之间,提高了接收X射线的立体角,比一般WDS的强度提高了50倍左右。可分析100eV—1.8keV能量范围内的K、L、M线,特别有利于低电压、低束流分析,对Be、B、C、N、O和F的分辨率可高达5—15eV,兼有WDS的高分辨率和EDS的高收集效率。这两种新型X射线光谱仪可望得到广泛的应用。
3、场发射q扫描电镜和低压扫描电镜
场发射扫描电镜得到了很大的发展〔24〕。日立公司推出了冷场发射q扫描电镜,Amray公司则生产热场发射q扫描电镜,不仅提高了常规加速电压时的分辨本领,还显著改善了低压性能。低压扫描电镜LVSEM由于可以提高成像的反差,减少甚至消除试样的充放电现象并减少辐照损伤,因此受到了人们的嘱目。JEOL公司的JSM-6000F型场发射超高分辨SEM的分辨本领在加速电压30kV时达0.6nm,已接近TEM的水平,但试样必须浸没入物镜的强磁场中以减少球差的影响,所以尺寸受到限制,最大为23mm×6mm×3mm(厚)。试样半浸没在物镜磁场中的场发射JSM-6340F型可以观察大试样,加速电压15kV时分辨本领为1.2nm,低压1kV时为2.5nm。这两种SEM由于试样要处在磁场中所以不能观察磁性材料。使用CF校正场小型物镜可观察大试样的场发射JSM-6600F型分辨本领为2.5nm(1kV时为8nm)。日立公司也供应这几类产品如S-5000,S-4500和S-4700型。
4、超大试样室扫描电镜
德国Visitec捷高公司的超大试样室Mira型扫描电镜。被检物的最大尺寸可为直径700mm,高600mm,长1400mm,最大重量可达300公斤,真空室长1400,宽1100和高1200mm。分辨本领4nm,加速电压0.3kV—20kV。是一种新的计算机控制、非破坏性的检查分析测试装置,可用于工业产品的生产,质量管理,微机加工和工艺品的检查研究等。
5、环境扫描电镜
80年代出现的环境扫描电镜ESEM,根据需要试样可处于压力为1—2600Pa不同气氛的高气压低真空环境中,开辟了新的应用领域。与试样室内为10-3Pa的常规高真空SEM不同,所以也可称为低真空扫描电镜LV-SEM。在这种低真空环境中,绝缘试样即使在高加速电压下也不会因出现充、放电现象而无法观察;潮湿的试样则可保持其原来的含水自然状态而不产生形变。因此,ESEM可直接观察塑料、陶瓷、纸张、岩石、泥土,以及疏松而会排放气体的材料和含水的生物试样,无需先喷涂导电层或冷冻干燥处理。1990年美国Electro
Scan公司首先推出了商品ESEM。为了保证试样室内的高气压低真空环境,LV-SEM的真空系统须予以特殊考虑。目前,Amray,Hitachi,JEOL和LEO等公司都有这种产品。试样室为6—270Pa时,JSM—5600LV—SEM的分辨本领已达5.0nm,自动切换到高真空状态后便如常规扫描电镜一样,分辨本领达3.5nm。中国科学院北京科学仪器研制中心与化工冶金研究所合作,发展KYKY-1500高温环境扫描电子显微镜,试样最高温度可达1200℃,最高气压为2600Pa;800℃时分辨率为60nm,观察了室温下的湿玉米淀粉颗粒断面、食盐的结晶粒子,以及在50Pa,900℃时铁矿中的针形Fe\-2O\-3等试样。
6、扫描电声显微镜
80年代初问世的扫描电声显微镜SEAM,采用了一种新的成像方式:其强度受频闪调制的电子束在试样表面扫描,用压电传感器接收试样热、d性微观性质变化的电声信号,经视频放大后成像。能对试样的亚表面实现非破坏性的剖面成像。可应用于半导体、金属和陶瓷材料,电子器件及生物学等领域。中国科学院北京科学仪器研制中心也发展了这种扫描电声显微镜,空间分辨本领为0.2—0.3μm。最近,中国科学院上海硅酸盐研究所采用数字扫描发生器控制电子束扫描等技术,提高了信噪比,使SEAM的图像质量得到了很大的改进。
7、测长/缺陷检测扫描电镜
SEM不但在科学研究而且在工农业生产中得到了广泛的应用,特别是电子计算机产业的兴起使其得到了很大的发展。目前半导体超大规模集成电路每条线的制造宽度正由0.25μm向0.18μm迈进。作为半导体集成电路生产线上Si片的常规检测工具,美国Amray公司推出了一种缺陷检测3800型DRT扫描电镜,采用了加热到1800K的ZrO/W阴极肖脱基热场发射电子q,具有良好的低加速电压性能:1kV时分辨本领达4nm,而且电子束流的稳定度优于1%/h、可长期连续工作,对直径为100,125,150,200mm的Si片,每小时可检测100个缺陷。日立公司为了克服以往在室温下工作的冷场发射q测长扫描电镜(CD-SEM)因需要进行闪烁处理以去除发射尖上所吸附的气体分子而经常中断工作、影响在生产线上应用的缺点,最近也推出了这种ZrO/W阴极热场发射电子q的S-8000系列CD-SEM。为了克服热场发射比冷场发射q电子能量分散大的缺点,设计了阻滞场电磁物镜,并改进了二次电子探测器,在加速电压为800V时分辨本领为5nm,可以每小时20片,每片5个检测点的速度连续检测125—200mm直径的Si〔1,28〕。
8、晶体学取向成像扫描电子显微术
SEM的另一个新发展方向是以背散射电子衍射图样(EBSP)为基础的晶体学取向成像电子显微术(OIM)。在SEM上增加一个可将试样倾动约70度的装置,CCD探测器和数据处理计算机系统,扫描并接收记录块状试样表面的背散射电子衍射花样(背散射菊池花样),按试样各部分不同的晶体取向分类成像来获得有关晶体结构的信息,可显示晶粒组织、晶界和裂纹等,也可用于测定织构和晶体取向。可望发展成SEM的一个标准附件。1996年美国TSL(TexSemLaboratories,Inc.)公司推出了TSL
OIM系统,空间分辨本领已优于0.2μm,比原理相似的电子通道图样(ECP)提高了一个量级,在0.4秒钟内即能完成一张衍射图样的自动定标工作。英国牛津集团显微分析仪器Link-OPAL公司的EBSD结晶学分析系统,目前已用于Si片上Al连线的取向分析,以判断其质量的优劣及可行性。
9、计算机控制扫描电镜
90年代初,飞利浦公司推出了XL系列扫描电镜。在保持重要功能的同时,减少了 *** 作的复杂性。仪器完全由计算机软件控制 *** 作。许多参量(焦距、像散校正和试样台移动速度等)和调节灵敏度都会根据显微镜的工作状态作自适应变化和耦合,可迅速而准确地改变电镜的主要参数。EDS完全与XL系统实现了一体化。该公司1995年生产了XL40
FEG等场发射扫描电镜。日立,JEOL等也先后推出了计算机控制的扫描电镜。
场发射扫描电镜的分辨本领最高已达到0.6nm,接近了透射电镜的水平,并得到了广泛的应用,但尚不能分辨原子。如何进一步提高扫描电镜的图像质量和分辨本领是人们十分关注的问题。Joy DC指出:由于分辨本领受到试样表面二次电子SE扩散区大小的基本限制,采取适当措施如喷镀一超薄金属层或布洛赫波隧穿效应(Bloch Wave Channeling)等来限制SE扩散区的尺寸,二次电子分辨本领可望达到0.2—0.3nm,并进而观察原子像。现代SEM电子束探针的半高宽FWHM已达0.3nm,场发射电子q也已具有足够高的亮度。因此在电子光学方面目前并不构成对SE分辨本领的基本限制。然而,对SEM的机械设计如试样台的漂移和震动等尚未给予足够的、如对扫描隧道显微镜那样的重视、二次电子探测器的信噪比和反差还不够理想,也影响了分辨本领。此外,SE分辨本领的定义和测定方法,SEM图像处理等也不如透射电子显微镜那么严格和完善。这些问题的解决必将进一步提高SEM的图像质量和分辨本领。
参考文献
〔1〕 金鹤鸣,姜新力,姚骏恩.中国电子显微分析仪器市场.见:分析仪器市场调查与分析.北京:海洋出版社,1998.第四章.p113—152.(待出版).
〔2〕 姚骏恩.创造探索微观世界的有力工具(今年诺贝尔奖物理学奖获得者的贡献).中国科技报,1986-12-08(3).
〔3〕 姚骏恩.电子显微镜的最近进展.电子显微学报,1982,1(1)∶1—9.
〔4〕 郭可信.晶体电子显微学与诺贝尔奖.电子显微学报,1983,2(2)∶1—5.
问题一:显微镜厂家有哪些(国内比较有名气的)? 我国的显微镜制造业已有近70年历史,据统计,国内显微镜的产量每年约15亿元,有一半用于出口,在世界显微镜的中低端市场,中国品牌占有了一席之地。显微镜行业对技术要求很高,核心是物镜的设计与加工,其中将倾注大量的心血和人力,这都是需要资历和技术人员的,所以国内的显微镜市场品牌划分相对来讲比较简单,出名的也就是那几家。国内的显微镜品牌大多由光学仪器厂转化而来,因为早期的显微镜并不普及,多由进口而来,随着战争的爆发,钱临照、林友苞等人在云南建立一小型光学车间,由外厂负责加工金属部件,制成数百台包括有油浸物镜的高倍显微镜,分送抗日后方教学、医学和工程建设单位使用,这是国内第一次批量生产显微镜。解放后,由于社会主义制度的优越性,国内纷纷建起了多个国营显微镜厂,这些工厂之间时常的进行技术交流,呈现了百花齐放的市场现象。当时比较出名的有上海光学厂、南京江南光学厂、仪圆光学仪器厂、广州光学厂、桂林光学厂等。
改革开放后,由于显微镜行业自身的发展需求和外资引入等多方面原因,国内的显微镜行业出现了不少变化。
麦克奥迪(MOTIC):90年代香港资本收购了原厦门光学仪器厂,投资建设,目前在国内建立了多个加工基地,在国外多个国家注册了商标,跻身成为世界第五大品牌显微镜。当前MOTIC在数码显微镜及显微数码互动方面具有较强的实力,最近也推出了电动显微镜,因为体制及资金投入有保证,MOTIC在研发方面投入比国内其他厂家要大,金相显微镜,倒置显微镜等有些型号也都不错。另外其销售能力也是有目共睹,麦克奥迪可以说是国内的第一显微镜品牌。
永新光学:包括宁波永新与江南永新。永新光学也是香港投资的,90年代收购宁波光学厂成立了宁波永新,生产各类光学显微镜,出口也比较多。2000年后,永新光学又收购了国内知名的江南光电,更名江南永新,江南永新继承江南光电的班底,江南光电是具有六十多年历史显微镜生产制造经验的大型专业化显微镜及光电仪器制造商,80年代又先后给LEICA、NIKON等国外知名显微镜大厂代工物镜及低端的显微镜整机,在工艺及技术也积累了不少经验,但整体给人印象还象以前的国营企业,研发投耽也不大,有些在吃老本。
上海仪圆光学:上海仪圆是国内比较有实力的老牌光学厂之一,成立于1978年,生产从生物、体视、金相、倒置、荧光等一系列显微镜,其中生产的生物显微镜、金相显微镜、偏光显微镜在国内比较领先,体视显微镜有些机型也不错。仪圆光学发展到现在,由于注重产品的质量与售后服务,现在他们在国内很多地方都设立有分公司和办事处,销售网络日趋庞大,在光学领域呈现异军突起之势,令人看好。
江西凤凰光学:军工转制的老厂,光学加工也较强的实力。凤凰相机是国内的知名品牌,随着数码相机的发展,国内的相机行业几乎是全军覆没,凤凰光学差不多是硕果仅存的一两家,可惜当前数码单反开始流行,凤凰光学迟迟未见这方面的动作,疼失一个大好机会。凤凰显微镜在凤凰光学中应该只是一小部分,近年推出了几款生物显微镜,有一两个机型还有些亮点,其他整体质量一般。
桂林光学厂:现在更名桂林威达光学仪器有限公司,它们几乎专业生产体视显微镜,因此桂光的体视显微镜是国内最好的,成像比较清晰,有些方面已经比较接近国外知名厂家的低端产品。近年来桂光推出了平行光路的高端体视显微镜,变焦比达1:9,同时同轴照明也有生产。
27
广州光学厂:改名为广州粤显光学仪器有限公司,是50年代重庆光学厂派人过来建立的,生产生物、体视、金相等系列显微镜,整体产品质量在国内中规中矩,不是特......>>
问题二:显微镜都有哪些品牌? 显微镜是什么牌子不重要
问题三:国产显微镜什么品牌质量有保障 凤凰 是 江西凤凰是正品啊
国产的品牌 江西凤凰还是很不错的 上市公司了 实力还是很强的
问题四:进口显微镜什么牌子好 看要什么显微镜:
光学显微镜选国产的就可以;
电子显微镜:
1、FEI
2、日本电子
3、蔡司4、日立
问题五:国产金相显微镜哪个牌子好? 你可以在当地找有销售显微镜的厂家购买,方便以后的显微镜维修和咨询!上海测维,北京测维,西安测维,广州光学、重庆光学、南京光学,前几个的显微镜还是不错的,你可以在网上看看他们的资料!
问题六:显微镜哪种品牌比较好? 你可以去正业科技官网上看一下,那里可能有你需要的显微镜。
问题七:哪个国产品牌的显微镜比较好啊? 不建议你买国产的那种玩具性质的垃圾显微镜,至少也要用到一般试验室水平的,比如成光的,昆光的,上海的,剑桥的,如果预算不足,建议你上牧夫看看,那里常常有二手的显微镜,我就200多淘了一个,感觉还不错,比那些什么尼康、蔡斯比不了,但对我来说足够用了
问题八:显微镜什么牌子好 奥林巴斯、莱卡、尼康等,这些是比较有牌子
问题九:显微镜国产什么品牌质量有保障 光学显微镜在我国已经已有近70年了,现在国内显微镜的产量每年在20亿元以上,其中约一半出口,在世界显微镜市场的中低端我们占有一席之地。显微镜制造是一个门槛比较高行业,主要核心部件是物镜的设计与加工,其中包含光学镜片的加工和研磨,有十几道工艺,其中一道工艺控制不好,都会很大影响最后成品的质量,而每道工艺的技术人员国内又比较少。加上光学玻璃的材料等等因素,故显微镜行业在中国发展几十年,能做好显微镜的的也就是那几家。
我国最早生产显微镜是在抗战时期,针对当时简单的望远镜、显微镜亦全凭进口的困境,在严济慈的领导下,钱临照、林友苞等人在云南建立一小型光学车间,由外厂负责加工金属部件,制成数百台包括有油浸物镜的高倍显微镜,分送抗日后方教学、医学和工程建设单位使用,这是国内第一次批量生产显微镜。解放后,国内的重庆光学厂技术比较雄厚,由于社会主义制度的优越性,大家都是国营的,每个厂家之间没有很多的秘密性,很快国内大多数省份都先后建立了自己的光学厂,最有实力的有上海光学厂,南京江南光学厂,重庆光学仪器厂,另外广州光学厂、桂林光学厂等也一定的知名度。
改革开发后,由于显微镜行业制造工艺复杂,乡镇企业一时难以进入,所以大多数显微镜厂家都还持续发展,有些还活得不错,但由于外资的进入,目前国内的显微镜行业也出现了不少变化。
麦克奥迪(MOTIC)是目前国内显微镜的第一品牌,它是90年代香港资本收购了原厦门光学仪器厂,投资建设的,目前它在国内建立了几个加工基地,在国外多个国家注册了商标,设立的公司或办事处。与老牌光学仪器厂贵阳新天也有合作,在贵阳建立了新厂。MOTIC在国外也开始有了一定的知名度,成为中国显微镜的代表,麦克奥迪(MOTIC)想成为世界第五大品牌显微镜,他们也一直在努力,但要达到目标还是任重道远,显微镜特别是物镜的设计与加工是非常有挑战性的,需要多年的积累与持续的投入。当前MOTIC 在数码显微镜及显微数码互动方面具有较强的实力,最近也推出了电动显微镜,因为体制及资金投入有保证,MOTIC在研发方面投入比国内其他厂家要大,金相显微镜,倒置显微镜等有些型号也都不错,走在了国内其他厂家的前面,另外MOTIC在国内设立了几十家分公司与办事处,直接销售,营销能力强也是MOTIC的一大优势,近年显微镜的销售已经过亿。
永新光学差不多是国内显微镜的第二品牌,包括宁波永新与江南永新。永新光学也是香港投资的,90年代收购宁波光学厂成立了宁波永新,生产各类光学显微镜,出口也比较多。2000年后,永新光学又收购了国内知名的江南光电,更名江南永新,江南永新继承江南光电的班底,江南光电是具有六十多年历史显微镜生产制造经验的大型专业化显微镜及光电仪器制造商,80年代又先后给LEICA、NIKON等国外知名显微镜大厂代工物镜及低端的显微镜整机,在工艺及技术也积累了不少经验,其生产的生物显微镜、金相显微镜、偏光显微镜在国内比较领先,体视显微镜有些机型也不错。但整体给人印象还象以前的国营企业,研发投入也不大,都是在吃老本,没有明显的技术进步。
重庆光电是国内真正的老牌光学厂,成立于1958年,生产从生物、倒置、荧光、体视、金相等一系列显微镜,其中倒置生物显微镜,金相显微镜在国内都比较有实力。重光发展到今天,也还是体制�原因,进步比较慢,人员流失比较严重,感觉在走下坡路,只是瘦死的骆驼比马大,现在他们在国内很多地方还设立有分公司与办事处,直接销售。
江西凤凰光学是军工转制的老厂,光学加工也较强的实力。凤凰相机是国内的知名品牌,随着数码相......>>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)