半导体界的人事震荡局 注定不平凡的调整

半导体界的人事震荡局 注定不平凡的调整,第1张

人事变动始终牵动着半导体产界人士的心。

2019 年是不平凡的一年,众多半导体巨头进行了高管调整,或宣布调整信息。下面一起回顾 2019 年半导体产业都经历了哪些重大人事变动。

SK 海力士

2018 年 12 月,SK 海力士公布营运长李锡熙晋升 CEO,原 CEO 朴星昱则转任 SK 集团 Supex 追求协议会 ICT 委员长,负责开拓 SK 集团未来技术与新成长动力。

现年 56 岁的李锡熙产学界经历完整,取得首尔大学无机材料硕士后,1990 年加入 SK 海力士前身现代电子成为研究员,此后又到美国求学,取得史丹佛大学材料博士学位,2000 年进入英特尔(Intel)就职。

任职英特尔 10 年时间,多次获颁最高荣誉的英特尔成就奖,2010 年在韩国科学技术院(KAIST)担任教授,2013 年重回 SK 海力士负责 DRAM 开发,2017 年晋升营运长成为半导体事业负责人。

英特尔

2019 年 1 月 31 日,英特尔宣布任命临时首席执行官罗伯特 - 斯旺(Robert Swan)为正式 CEO。这是英特尔 51 年来第七次任命首席执行官。

自 2018 年 6 月,首席执行官布莱恩 - 科再奇(Brian Krzanich)因违反公司政策与一名员工存在不正当关系而被解职,罗伯特 - 斯旺担任临时首席执行官至今已有 7 个月,他自 2016 年起担任首席财务官,并获选为公司董事会成员。

现任财务副总裁托德 - 安德伍德(Todd Underwood)将接任临时 CFO 一职,公司将寻找一名永久性 CFO。

Swan 拥有布法罗大学工商管理学士学位和宾厄姆顿大学工商管理硕士学位。他是 eBay 的董事会成员。1985 年在通用电气公司开始了他的职业生涯,持有各种高级财务他在那里工作了 15 年。在其职业生涯早期,斯旺担任电子数据系统公司和 TRW 公司的首席财务官,以及担任 Webvan Group Inc。 首席运营官兼首席执行官的首席财务官。2006 年加入 eBay Inc。 担任首席财务官,负责 eBay 财务职能的各个方面,包括管理,财务规划和分析,税务,财务,审计,兼并和收购,和投资者关系。2015 年加入 General Atlantic 担任运营合作伙伴,与公司的全球投资公司密切合作,共同实现增长目标。2016 年 10 月起担任英特尔公司的执行副总裁兼首席财务官(CFO)。他负责监督英特尔的全球金融组织,包括财务,会计和报告,税务,财务,内部审计和投资者关系,信息技术;和公司的企业战略办公室。2018 年 6 月 21 日被任命为英特尔公司的临时首席执行官。

利扬芯片

2019 年 2 月,张亦锋加入广东利扬芯片测试股份有限公司任公司首席执行官。

张亦锋,在西安电子 科技 大学通信工程学院应用电子技术专业获学士学位,复旦大学管理学院工商管理专业(MBA)毕业,研究生学历。2000 年 7 月至 2013 年 12 月,,任职于上海华虹 NEC 电子有限公司,先后在计划部、Foundry 事业部、业务发展部等部门担任资深主管工程师、主任、科长等职。2014 年 1 月至 2015 年 8 月任职于上海华虹宏力半导体制造有限公司,担任产品销售科科长。2015 年 8 月至 2015 年 12 月任职于武汉力源信息股份有限公司,担任 IC 事业部总监。2016 年 1 月至 2019 年 1 月,任职于珠海博雅 科技 有限公司,担任首席商务官、副总裁,兼任全资子公司四川泓芯 科技 有限公司总经理。

华虹集团

华虹半导体

2019 年 3 月 28 日,华虹集团对旗下制造平台进行了人事调整,宣布上海华力集成总经理唐均君接替王煜担任上市公司华虹半导体总裁一职(5 月 1 日正式接任),希望发挥唐总在 12 英寸生产线的经验,以便更好的让华虹无锡基地的 12 英寸产线快速产生效益。

上海华力

华虹集团对旗下制造平台进行了人事调整,宣布上海华力微总裁雷海波兼任上海华力集成总裁,作为中国大陆培养的本土 12 英寸产线领头人,雷总现在要负责两个 12 英寸产线的运营。华力微在 2018 年实现首次年度盈利。

上海新升

2019 年 5 月 5 日,邱慈云出任上海新升 CEO。

邱慈云生于 1956 年,获得加州伯克利分校电气工程博士学位和哥伦比亚大学高级管理人员工商管理硕士学位。他早年曾在德国慕尼黑固体技术研究所 At&t 贝尔实验室和台积电工作。2001 年曾追随张汝京创办中芯国际;2005 年加入华虹 NEC 担任运营副总裁;2007 年加入马来西亚 Silterra 担任 COO;2009 年回到华虹 NEC 担任总裁兼 CEO;2011 年 8 月起,担任中芯国际 CEO,至 2017 年 5 月因个人原因请辞。

瑞萨电子

2019 年 6 月 26 日,瑞萨电子官方发布公告,现任 CEO 吴文精( Bunsei Kure)将于 2019 年 6 月 30 日辞去其代表董事、总裁兼 CEO,柴田英利(Hidetoshi Shibata)将成为为其代表董事,总裁兼 CEO,任命自 2019 年 7 月 1 日起生效。

吴文精下台的原因是瑞萨经营业绩欠佳。

芯思想研究院认为,瑞萨是日本半导体产业界的一朵奇葩,越整合则越虚弱。

武汉弘芯

2019 年 7 月 17 日,蒋尚义正式出任武汉弘芯总经理。

蒋尚义,1968 年在国立台湾大学获电子工程学学士学位,1970 年在普林斯顿大学获电子工程学硕士学位,1974 年在斯坦福大学获电子工程学博士学位。毕业后,蒋博士曾在德州仪器和惠普公司工作。1997 年回到台湾,任职台积电研发副总裁,是台积电掌管单一部门时间最久的人。2013 年任台积电共同首席执行副总和共同运营官。

在台积电期间,蒋尚义将研发团队从 120 人扩编至 2013 年的 7000 多人,年度研发经费更从 25 亿台币激增至 2013 年的 480 亿台币;曾参与研发 CMOS、NMOS、Bipolar、DMOS、SOS、SOI、GaAs 激光、LED、电子束光刻、矽基太阳能电池等项目;带领台积电自主研发,一路从 0.25 微米、0.18 微米、0.15 微米、0.13 微米、90 纳米、65 纳米走到 40 纳米世代,还参与了 28 纳米 HKMG 高介电金属闸极、16 纳米 FinFET 等关键节点的研发,使台积电的行业地位从技术跟随者发展为技术引领者。

华微电子

2019 年 7 月 9 日,首席执行官(CEO)聂嘉宏先生辞呈。

经公司董事长提名,董事会提名委员会审核,公司董事会同意聘任于胜东先生为首席执行官,任期自董事会通过之日起至本届董事会届满为止。

凯世通

2019 年 8 月,陈克禄接替陈烔(JIONG CHEN)担任凯世通总经理。

陈克禄,原上海浦东 科技 投资有限公司投资总监。

2015 年,上海浦东 科技 投资有限公司(以下简称“浦科投资”)入主万业企业,并于 2018 年成为其控股股东(持股 28.16%),积极推动其战略转型。

万业企业将转型目标瞄准了集成电路装备及材料产业。2017 年,经董事会和股东大会审议通过,万业企业以 10 亿元自有资金认购上海半导体装备材料产业投资基金首期 20%份额,迈出了转型的第一步。

2018 年 7 月,万业企业启动收购上海凯世通半导体股份有限公司(以下简称“凯世通”)100%股权相关事宜,最终以 3.98 亿元的价格、以现金收购的方式,成功完成对凯世通 100%股权的收购。收购凯世通后,万业企业正式切入集成电路核心装备产业之一的离子注入机领域。

长电 科技

2019 年 9 月 9 日,长电 科技 发布公告称:董事会收到 LEE CHOON HEUNG(李春兴)先生请求辞去首席执行长(CEO)及第七届董事会董事职务的书面辞职书,经研究讨论公司董事会同意李春兴先生辞去首席执行长职务的请求。根据《公司章程》,李春兴先生辞去公司董事职务在书面辞职书送达董事会时已生效,其不再担任公司董事。辞去上述职务后,李春兴先生将继续担任公司首席技术长(CTO)职务,并继续致力于公司的发展。

根据长电 科技 董事长周子学先生提名,经董事会提名委员会审核,一致同意聘任郑力先生为公司首席执行长,同时提名郑力先生为公司第七届董事会非独立董事,任期自本次董事会聘任通过之日起至本届董事会任期届满。

郑力,男,1967 年 8 月出生,天津大学工业管理工程专业工学士,东京大学金融经济管理硕士。郑力在美国、日本、欧洲和中国国内的集成电路产业拥有超过 26 年的工作经验。曾任曾任恩智浦全球高级副总裁兼大中华区总裁;中芯国际全球市场高级副总裁,瑞萨电子大中华区 CEO,NEC 电子(后与日立公司和三菱公司的半导体部门合并为瑞萨电子)大中华区总裁,华虹国际有限公司副总裁,上海虹日国际电子有限公司总经理,日本东棉美国公司(现丰田通商美国公司)加州圣荷西分公司总经理,日本东棉公司总部(现日本丰田通商公司)电子信息系统本部担任产品开发经理、集成电路项目管理经理等职务。

安靠

2019 年 6 月,安靠中国区总裁周晓阳正式离职,10 月由曹持论接任。

周晓阳,西安人,1984 年本科毕业于西安交通大学半导体专业,1984 年至 1987 年在骊山微电子研究所师从黄敞老师,获得硕士学位;1987 年至 1993 年在西安 771 所工作,时任组合车间副主任;1993 年至 1997 年任职国家半导体上海公司工作;1997 年至 2007 年任职英特尔;2007 年至 2011 年任职星科金朋;2011 年至 2014 年在楼氏电子工作,曾任楼氏电子苏州和北京公司总经理;2014 年加入安靠,任中国区总裁及安靠封装测试(上海)有限公司总经理。

安靠中国区在周晓阳的带领下,创下了辉煌的业绩,公司已经成为中国大陆及安靠全球技术最先进、产能最大、发货量最大的 NAND 封测厂,为很多中国集成电路设计公司保驾护航。

在周晓阳带领下,2014-2018 年间,安靠上海年平均贡献税收约为 1 亿元人民币,并获得浦东“纳税突出贡献奖”;进出口额约 224 亿美元,连年获得浦东“贸易贡献奖”;此外,安靠上海名列中国十大封测企业、荣获市外资进出口百强、市外资吸收就业人数百强、市外资双优企业等奖项。

曹持论,2001 年 5 月加入安靠公司,曾担任安靠中国区副总裁及厂长职务。

芯聚能半导体

2019 年 11 月正式加入创业公司芯聚能半导体,接替王颖颖担任法人和总经理。

周晓阳,西安人,1984 年本科毕业于西安交通大学半导体专业,1984 年至 1987 年在骊山微电子研究所师从黄敞老师,获得硕士学位;1987 年至 1993 年在西安 771 所工作,时任组合车间副主任;1993 年至 1997 年任职国家半导体上海公司工作;1997 年至 2007 年任职英特尔;2007 年至 2011 年任职星科金朋;2011 年至 2014 年在楼氏电子工作,曾任楼氏电子苏州和北京公司总经理;2014 年加入安靠,任中国区总裁及安靠封装测试(上海)有限公司总经理。2019 年 6 月离开安靠。

北方华创

10 月 31 日,北方华创发布公告称,董事会于 2019 年 10 月 31 日收到公司副总经理张国铭先生提交的书面辞职报告,张国铭先生由于个人原因申请辞去公司副总经理职务,辞职后不在公司担任任何职务。

张国铭先生曾任北方华创 科技 集团股份有限公司高级副总裁、首席战略官,并兼任北京北方华创微电子装备有限公司董事、副总裁,北京七星华创流量计有限公司董事长,北京七星华创集成电路装备有限公司执行董事。曾任北京建中机器厂总工程师、副厂长,北京七星华创电子股份有限公司微电子设备分公司总经理,北京七星华创电子股份有限公司副总经理。

张国铭先生担任国家 02 科技 重大专项总体专家组专家、 科技 部“十三五”重点专项先进制造专家组专家、国家集成电路产业投资基金股份有限公司投资审核委员会委员、北京电子制造装备行业协会秘书长、国际 SEMI 协会全球董事会董事、SEMI 中国半导体设备及材料委员会主席等多种职务。

据悉,张国铭已经加盟华海清科。

来源: 与非网

关注同花顺 财经 微信公众号(ths518),获取更多 财经 资讯

晶体管

晶体管(transistor 计:MOS transistornpn 化:transistor)

【简介】

晶体管,本名是半导体三极管,是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。输入级和输出级都采用晶体管的逻辑电路,叫做晶体管-晶体管逻辑电路,书刊和实用中都简称为TTL电路,它属于半导体集成电路的一种,其中用得最普遍的是TTL与非门。TTL与非门是将若干个晶体管和电阻元件组成的电路系统集中制造在一块很小的硅片上,封装成一个独立的元件.晶体管是半导体三极管中应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。

晶体管被认为是现代历史中最伟大的发明之一,在重要性方面可以与印刷术,汽车和电话等的发明相提并论。晶体管实际上是所有现代电器的关键活动(active)元件。晶体管在当今社会的重要性主要是因为晶体管可以使用高度自动化的过程进行大规模生产的能力,因而可以不可思议地达到极低的单位成本。

虽然数以百万计的单体晶体管还在使用,绝大多数的晶体管是和二极管|-{A|zh-cn:二极管zh-tw:二极体}-,电阻,电容一起被装配在微芯片(芯片)上以制造完整的电路。模拟的或数字的或者这两者被集成在同一块芯片上。设计和开发一个复杂芯片的生本是相当高的,但是当分摊到通常百万个生产单位上,每个芯片的价格就是最小的。一个逻辑门包含20个晶体管,而2005年一个高级的微处理器使用的晶体管数量达2.89亿个。

晶体管的低成本,灵活性和可靠性使得其成为非机械任务的通用器件,例如数字计算。在控制电器和机械方面,晶体管电路也正在取代电机设备,因为它通常是更便宜,更有效地仅仅使用标准集成电路并编写计算机程序来完成同样的机械任务,使用电子控制,而不是设计一个等效的机械控制。

因为晶体管的低成本和后来的电子计算机,数字化信息的浪潮来到了。由于计算机提供快速的查找、分类和处理数字信息的能力,在-{A|zh-cn:信息zh-tw:资讯}--{A|zh-cn:数字zh-tw:数位}-化方面投入了越来越多的精力。今天的许多媒体是通过电子形式发布的,最终通过计算机转化和呈现为模拟形式。受到数字化革命影响的领域包括电视,广播和报纸。

【英文简述】

A transistor is a semiconductor device, commonly used as an amplifier or an electrically controlled switch. The transistor is the fundamental building block of the circuitry that governs the operation of computers, cellular phones, and all other modern electronics.

Because of its fast response and accuracy, the transistor may be used in a wide variety of digital and analog functions, including amplification, switching, voltage regulation, signal modulation, and oscillators. Transistors may be packaged individually or as part of an integrated circuit, which may hold a billion or more transistors in a very small area.

【历史】

1947年12月,美国贝尔实验室的肖克莱、巴丁和布拉顿组成的研究小组,研制出一种点接触型的锗晶体管。晶体管的问世,是20世纪的一项重大发明,是微电子革命的先声。晶体管出现后,人们就能用一个小巧的、消耗功率低的电子器件,来代替体积大、功率消耗大的电子管了。晶体管的发明又为后来集成电路的降生吹响了号角。

20世纪最初的10年,通信系统已开始应用半导体材料。20世纪上半叶,在无线电爱好者中广泛流行的矿石收音收,就采用矿石这种半导体材料进行检波。半导体的电学特性也在电话系统中得到了应用。

晶体管的发明,最早可以追溯到1929年,当时工程师利莲费尔德就已经取得一种晶体管的专利。但是,限于当时的技术水平,制造这种器件的材料达不到足够的纯度,而使这种晶体管无法制造出来。

由于电子管处理高频信号的效果不理想,人们就设法改进矿石收音机中所用的矿石触须式检波器。在这种检波器里,有一根与矿石(半导体)表面相接触的金属丝(像头发一样细且能形成检波接点),它既能让信号电流沿一个方向流动,又能阻止信号电流朝相反方向流动。在第二次世界大战爆发前夕,贝尔实验室在寻找比早期使用的方铅矿晶体性能更好的检波材料时,发现掺有某种极微量杂质的锗晶体的性能不仅优于矿石晶体,而且在某些方面比电子管整流器还要好。

在第二次世界大战期间,不少实验室在有关硅和锗材料的制造和理论研究方面,也取得了不少成绩,这就为晶体管的发明奠定了基础。

为了克服电子管的局限性,第二次世界大战结束后,贝尔实验室加紧了对固体电子器件的基础研究。肖克莱等人决定集中研究硅、锗等半导体材料,探讨用半导体材料制作放大器件的可能性。

1945年秋天,贝尔实验室成立了以肖克莱为首的半导体研究小组,成员有布拉顿、巴丁等人。布拉顿早在1929年就开始在这个实验室工作,长期从事半导体的研究,积累了丰富的经验。他们经过一系列的实验和观察,逐步认识到半导体中电流放大效应产生的原因。布拉顿发现,在锗片的底面接上电极,在另一面插上细针并通上电流,然后让另一根细针尽量靠近它,并通上微弱的电流,这样就会使原来的电流产生很大的变化。微弱电流少量的变化,会对另外的电流产生很大的影响,这就是“放大”作用。

布拉顿等人,还想出有效的办法,来实现这种放大效应。他们在发射极和基极之间输入一个弱信号,在集电极和基极之间的输出端,就放大为一个强信号了。在现代电子产品中,上述晶体三极管的放大效应得到广泛的应用。

巴丁和布拉顿最初制成的固体器件的放大倍数为50左右。不久之后,他们利用两个靠得很近(相距0.05毫米)的触须接点,来代替金箔接点,制造了“点接触型晶体管”。1947年12月,这个世界上最早的实用半导体器件终于问世了,在首次试验时,它能把音频信号放大100倍,它的外形比火柴棍短,但要粗一些。

在为这种器件命名时,布拉顿想到它的电阻变换特性,即它是靠一种从“低电阻输入”到“高电阻输出”的转移电流来工作的,于是取名为trans-resister(转换电阻),后来缩写为transister,中文译名就是晶体管。

由于点接触型晶体管制造工艺复杂,致使许多产品出现故障,它还存在噪声大、在功率大时难于控制、适用范围窄等缺点。为了克服这些缺点,肖克莱提出了用一种"整流结"来代替金属半导体接点的大胆设想。半导体研究小组又提出了这种半导体器件的工作原理。

1950年,第一只“面结型晶体管”问世了,它的性能与肖克莱原来设想的完全一致。今天的晶体管,大部分仍是这种面结型晶体管。

1956年,肖克莱、巴丁、布拉顿三人,因发明晶体管同时荣获诺贝尔物理学奖。

【晶体管的发展历史及其重要里程碑】

1947年12月16日:威廉·邵克雷(William Shockley)、约翰·巴顿(John Bardeen)和沃特·布拉顿(Walter Brattain)成功地在贝尔实验室制造出第一个晶体管。

1950年:威廉·邵克雷开发出双极晶体管(Bipolar Junction Transistor),这是现在通行的标准的晶体管。

1953年:第一个采用晶体管的商业化设备投入市场,即助听器。

1954年10月18日:第一台晶体管收音机Regency TR1投入市场,仅包含4只锗晶体管。

1961年4月25日:第一个集成电路专利被授予罗伯特·诺伊斯(Robert Noyce)。最初的晶体管对收音机和电话而言已经足够,但是新的电子设备要求规格更小的晶体管,即集成电路。

1965年:摩尔定律诞生。当时,戈登·摩尔(Gordon Moore)预测,未来一个芯片上的晶体管数量大约每年翻一倍(10年后修正为每两年),摩尔定律在Electronics Magazine杂志一篇文章中公布。

1968年7月:罗伯特·诺伊斯和戈登·摩尔从仙童(Fairchild)半导体公司辞职,创立了一个新的企业,即英特尔公司,英文名Intel为“集成电子设备(integrated electronics)”的缩写。

1969年:英特尔成功开发出第一个PMOS硅栅晶体管技术。这些晶体管继续使用传统的二氧化硅栅介质,但是引入了新的多晶硅栅电极。

1971年:英特尔发布了其第一个微处理器4004。4004规格为1/8英寸 x 1/16英寸,包含仅2000多个晶体管,采用英特尔10微米PMOS技术生产。

1978年:英特尔标志性地把英特尔8088微处理器销售给IBM新的个人电脑事业部,武装了IBM新产品IBM PC的中枢大脑。16位8088处理器含有2.9万个晶体管,运行频率为5MHz、8MHz和10MHz。8088的成功推动英特尔进入了财富(Forture) 500强企业排名,《财富(Forture)》杂志将英特尔公司评为“七十大商业奇迹之一(Business Triumphs of the Seventies)”。

1982年:286微处理器(又称80286)推出,成为英特尔的第一个16位处理器,可运行为英特尔前一代产品所编写的所有软件。286处理器使用了13400个晶体管,运行频率为6MHz、8MHz、10MHz和12.5MHz。

1985年:英特尔386™微处理器问世,含有27.5万个晶体管,是最初4004晶体管数量的100多倍。386是32位芯片,具备多任务处理能力,即它可在同一时间运行多个程序。

1993年:英特尔®奔腾®处理器问世,含有3百万个晶体管,采用英特尔0.8微米制程技术生产。

1999年2月:英特尔发布了奔腾®III处理器。奔腾III是1x1正方形硅,含有950万个晶体管,采用英特尔0.25微米制程技术生产。

2002年1月:英特尔奔腾4处理器推出,高性能桌面台式电脑由此可实现每秒钟22亿个周期运算。它采用英特尔0.13微米制程技术生产,含有5500万个晶体管。

2002年8月13日:英特尔透露了90纳米制程技术的若干技术突破,包括高性能、低功耗晶体管,应变硅,高速铜质接头和新型低-k介质材料。这是业内首次在生产中采用应变硅。

2003年3月12日:针对笔记本的英特尔®迅驰®移动技术平台诞生,包括了英特尔最新的移动处理器“英特尔奔腾M处理器”。该处理器基于全新的移动优化微体系架构,采用英特尔0.13微米制程技术生产,包含7700万个晶体管。

2005年5月26日:英特尔第一个主流双核处理器“英特尔奔腾D处理器”诞生,含有2.3亿个晶体管,采用英特尔领先的90纳米制程技术生产。

2006年7月18日:英特尔®安腾®2双核处理器发布,采用世界最复杂的产品设计,含有17.2亿个晶体管。该处理器采用英特尔90纳米制程技术生产。

2006年7月27日:英特尔®酷睿™2双核处理器诞生。该处理器含有2.9亿多个晶体管,采用英特尔65纳米制程技术在世界最先进的几个实验室生产。

2006年9月26日:英特尔宣布,超过15种45纳米制程产品正在开发,面向台式机、笔记本和企业级计算市场,研发代码Penryn,是从英特尔®酷睿™微体系架构派生而出。

2007年1月8日:为扩大四核PC向主流买家的销售,英特尔发布了针对桌面电脑的65纳米制程英特尔®酷睿™2四核处理器和另外两款四核服务器处理器。英特尔®酷睿™2四核处理器含有5.8亿多个晶体管。

2007年1月29日:英特尔公布采用突破性的晶体管材料即高-k栅介质和金属栅极。英特尔将采用这些材料在公司下一代处理器——英特尔®酷睿™2双核、英特尔®酷睿™2四核处理器以及英特尔®至强®系列多核处理器的数以亿计的45纳米晶体管或微小开关中用来构建绝缘“墙”和开关“门”,研发代码Penryn。采用了这些先进的晶体管,已经生产出了英特尔45纳米微处理器。

【晶体管出现的意义】

晶体管的出现,是电子技术之树上绽开的一朵绚丽多彩的奇葩。

同电子管相比,晶体管具有诸多优越性:

①晶体管的构件是没有消耗的。无论多么优良的电子管,都将因阴极原子的变化和慢性漏气而逐渐劣化。由于技术上的原因,晶体管制作之初也存在同样的问题。随着材料制作上的进步以及多方面的改善,晶体管的寿命一般比电子管长 100到1000倍,称得起永久性器件的美名。

②晶体管消耗电子极少,仅为电子管的十分之一或几十分之一。它不像电子管那样需要加热灯丝以产生自由电子。一台晶体管收音机只要几节干电池就可以半年一年地听下去,这对电子管收音机来说,是难以做到的。

③晶体管不需预热,一开机就工作。例如,晶体管收音机一开就响,晶体管电视机一开就很快出现画面。电子管设备就做不到这一点。开机后,非得等一会儿才听得到声音,看得到画面。显然,在军事、测量、记录等方面,晶体管是非常有优势的。

④晶体管结实可靠,比电子管可靠 100倍,耐冲击、耐振动,这都是电子管所无法比拟的。另外,晶体管的体积只有电子管的十分之一到百分之一,放热很少,可用于设计小型、复杂、可靠的电路。晶体管的制造工艺虽然精密,但工序简便,有利于提高元器件的安装密度。

正因为晶体管的性能如此优越,晶体管诞生之后,便被广泛地应用于工农业生产、国防建设以及人们日常生活中。1953年,首批电池式的晶体管收音机一投放市场,就受到人们的热烈欢迎,人们争相购买这种收音机。接着,各厂家之间又展开了制造短波晶体管的竞赛。此后不久,不需要交流电源的袖珍“晶体管收音机”开始在世界各地出售,又引起了一个新的消费热潮。

由于硅晶体管适合高温工作,可以抵抗大气影响,在电子工业领域是最受欢迎的产品之一。从1967年以来,电子测量装置或者电视摄像机如果不是“晶体管化”的,那么就别想卖出去一件。轻便收发机,甚至车载的大型发射机也都晶体管化了。

另外,晶体管还特别适合用作开关。它也是第二代计算机的基本元件。人们还常常用硅晶体管制造红外探测器。就连可将太阳能转变为电能的电池——太阳能电池也都能用晶体管制造。这种电池是遨游于太空的人造卫星的必不可少的电源。晶体管这种小型简便的半导体元件还为缝纫机、电钻和荧光灯开拓了电子控制的途径。

从1950年至1960年的十年间,世界主要工业国家投入了巨额资金,用于研究、开发与生产晶体管和半导体器件。例如,纯净的锗或硅半导体,导电性能很差,但加入少量其它元素(称为杂质)后,导电性能会提高许多。但是要想把定量杂质正确地熔入锗或硅中,必须在一定的温度下,通过加热等方法才能实现。而一旦温度高于摄氏75度,晶体管就开始失效。为了攻克这一技术难关,美国政府在工业界投资数百万美元,

以开展这项新技术的研制工作。在这样雄厚的财政资助下,没过多久,人们便掌握了这种高熔点材料的提纯、熔炼和扩散的技术。特别是晶体管在军事计划和宇宙航行中的威力日益显露出来以后,为争夺电子领域的优势地位,世界各国展开了激烈的竞争。为实现电子设备的小型化,人们不惜成本,纷纷给电子工业以巨大的财政资助。

自从1904年弗莱明发明真空二极管,1906年德福雷斯特发明真空三极管以来,电子学作为一门新兴学科迅速发展起来。但是电子学真正突飞猛进的进步,还应该是从晶体管发明以后开始的。尤其是PN结型晶体管的出现,开辟了电子器件的新纪元,引起了一场电子技术的革命。在短短十余年的时间里,新兴的晶体管工业以不可战胜的雄心和年轻人那样无所顾忌的气势,迅速取代了电子管工业通过多年奋斗才取得的地位,一跃成为电子技术领域的排头兵。

【分类】

按半导体材料和极性分类

按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管。按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。

按结构及制造工艺分类

晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。

按电流容量分类

晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。

按工作频率分类

晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。

按封装结构分类

晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。其封装外形多种多样。

按功能和用途分类

晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。

【电力晶体管】

电力晶体管按英文Giant Transistor直译为巨型晶体管,是一种耐高电压、大电流的双极结型晶体管(Bipolar Junction Transistor—BJT),所以有时也称为Power BJT;其特性有:耐压高,电流大,开关特性好,但驱动电路复杂,驱动功率大;GTR和普通双极结型晶体管的工作原理是一样的。

【光晶体管】

光晶体管(phototransistor)由双极型晶体管或场效应晶体管等三端器件构成的光电器件。光在这类器件的有源区内被吸收,产生光生载流子,通过内部电放大机构,产生光电流增益。光晶体管三端工作,故容易实现电控或电同步。光晶体管所用材料通常是砷化镓(CaAs),主要分为双极型光晶体管、场效应光晶体管及其相关器件。双极型光晶体管通常增益很高,但速度不太快,对于GaAs-GaAlAs,放大系数可大于1000,响应时间大于纳秒,常用于光探测器,也可用于光放大。场效应光晶体管响应速度快(约为50皮秒),但缺点是光敏面积小,增益小(放大系数可大于10),常用作极高速光探测器。与此相关还有许多其他平面型光电器件,其特点均是速度快(响应时间几十皮秒)、适于集成。这类器件可望在光电集成中得到应用。

【双极晶体管】

双极晶体管(bipolar transistor)指在音频电路中使用得非常普遍的一种晶体管。双极则源于电流系在两种半导体材料中流过的关系。双极晶体管根据工作电压的极性而可分为NPN型或PNP型。

【双极结型晶体管】

双极结型晶体管(Bipolar Junction Transistor—BJT)又称为半导体三极管,它是通过一定的工艺将两个PN结结合在一起的器件,有PNP和NPN两种组合结构;外部引出三个极:集电极,发射极和基极,集电极从集电区引出,发射极从发射区引出,基极从基区引出(基区在中间);BJT有放大作用,重要依靠它的发射极电流能够通过基区传输到达集电区而实现的,为了保证这一传输过程,一方面要满足内部条件,即要求发射区杂质浓度要远大于基区杂质浓度,同时基区厚度要很小,另一方面要满足外部条件,即发射结要正向偏置(加正向电压)、集电结要反偏置;BJT种类很多,按照频率分,有高频管,低频管,按照功率分,有小、中、大功率管,按照半导体材料分,有硅管和锗管等;其构成的放大电路形式有:共发射极、共基极和共集电极放大电路。

【场效应晶体管】

场效应晶体管(field effect transistor)利用场效应原理工作的晶体管。英文简称FET。场效应就是改变外加垂直于半导体表面上电场的方向或大小,以控制半导体导电层(沟道)中多数载流子的密度或类型。它是由电压调制沟道中的电流,其工作电流是由半导体中的多数载流子输运。这类只有一种极性载流子参加导电的晶体管又称单极型晶体管。与双极型晶体管相比,场效应晶体管具有输入阻抗高、噪声小、极限频率高、功耗小,制造工艺简单、温度特性好等特点,广泛应用于各种放大电路、数字电路和微波电路等。以硅材料为基础的金属�氧化物�半导体场效应管(MOSFET)和以砷化镓材料为基础的肖特基势垒栅场效应管(MESFET)是两种最重要的场效应晶体管,分别为MOS大规模集成电路和MES超高速集成电路的基础器件。

【静电感应晶体管】

静电感应晶体管SIT(Static Induction Transistor)诞生于1970年,实际上是一种结型场效应晶体管。将用于信息处理的小功率SIT器件的横向导电结构改为垂直导电结构,即可制成大功率的SIT器件。SIT是一种多子导电的器件,其工作频率与电力MOSFET相当,甚至超过电力MOSFET,而功率容量也比电力MOSFET大,因而适用于高频大功率场合,目前已在雷达通信设备、超声波功率放大、脉冲功率放大和高频感应加热等某些专业领域获得了较多的应用。

但是SIT在栅极不加任何信号时是导通的,栅极加负偏压时关断,这被称为正常导通型器件,使用不太方便。此外,SIT通态电阻较大,使得通态损耗也大,因而SIT还未在大多数电力电子设备中得到广泛应用。

【单电子晶体管】

用一个或者少量电子就能记录信号的晶体管。随着半导体刻蚀技术和工艺的发展,大规模集成电路的集成度越来越高。以动态随机存储器(DRAM)为例,它的集成度差不多以每两年增加四倍的速度发展,预计单电子晶体管将是最终的目标。目前一般的存储器每个存储元包含了20万个电子,而单电子晶体管每个存储元只包含了一个或少量电子,因此它将大大降低功耗,提高集成电路的集成度。1989年斯各特(J.H. F.Scott-Thomas)等人在实验上发现了库仑阻塞现象。在调制掺杂异质结界面形成的二维电子气上面,制作一个面积很小的金属电极,使得在二维电子气中形成一个量子点,它只能容纳少量的电子,也就是它的电容很小,小于一个?F (10-15法拉)。当外加电压时,如果电压变化引起量子点中电荷变化量不到一个电子的电荷,则将没有电流通过。直到电压增大到能引起一个电子电荷的变化时,才有电流通过。因此电流-电压关系不是通常的直线关系,而是台阶形的。这个实验在历史上第一次实现了用人工控制一个电子的运动,为制造单电子晶体管提供了实验依据。为了提高单电子晶体管的工作温度,必须使量子点的尺寸小于10纳米,目前世界各实验室都在想各种办法解决这个问题。有些实验室宣称已制出室温下工作的单电子晶体管,观察到由电子输运形成的台阶型电流-电压曲线,但离实用还有相当的距离。

【绝缘栅双极晶体管】

绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)综合了电力晶体管(Giant Transistor—GTR)和电力场效应晶体管(Power MOSFET)的优点,具有良好的特性,应用领域很广泛;IGBT也是三端器件:栅极,集电极和发射极。

【主要参数】

晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。

电流放大系数

电流放大系数也称电流放大倍数,用来表示晶体管放大能力。

根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。

1.直流电流放大系数 直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。

2.交流电流放大系数 交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。

hFE或β既有区别又关系密切,两个参数值在低频时较接近,在高频时有一些差异。

耗散功率

耗散功率也称集电极最大允许耗散功率PCM,是指晶体管参数变化不超过规定允许值时的最大集电极耗散功率。

耗散功率与晶体管的最高允许结温和集电极最大电流有密切关系。晶体管在使用时,其实际功耗不允许超过PCM值,否则会造成晶体管因过载而损坏。

通常将耗散功率PCM小于1W的晶体管称为小功率晶体管,PCM等于或大于1W、小于5W的晶体管被称为中功率晶体管,将PCM等于或大于5W的晶体管称为大功率晶体管。

频率特性

晶体管的电流放大系数与工作频率有关。若晶体管超过了其工作频率范围,则会出现放大能力减弱甚至失去放大作用。

晶体管的频率特性参数主要包括特征频率fT和最高振荡频率fM等。

1.特征频率fT 晶体管的工作频率超过截止频率fβ或fα时,其电流放大系数β值将随着频率的升高而下降。特征频率是指β值降为1时晶体管的工作频率。

通常将特征频率fT小于或等于3MHZ的晶体管称为低频管,将fT大于或等于30MHZ的晶体管称为高频管,将fT大于3MHZ、小于30MHZ的晶体管称为中频管。

2.最高振荡频率fM 最高振荡频率是指晶体管的功率增益降为1时所对应的频率。

通常,高频晶体管的最高振荡频率低于共基极截止频率fα,而特征频率fT则高于共基极截止频率fα、低于共集电极截止频率fβ。

集电极最大电流ICM

集电极最大电流是指晶体管集电极所允许通过的最大电流。当晶体管的集电极电流IC超过ICM时,晶体管的β值等参数将发生明显变化,影响其正常工作,甚至还会损坏。

最大反向电压

最大反向电压是指晶体管在工作时所允许施加的最高工作电压。它包括集电极—发射极反向击穿电压、集电极—基极反向击穿电压和发射极—基极反向击穿电压。

1.集电极—发射极反向击穿电压 该电压是指当晶体管基极开路时,其集电极与发射极之间的最大允许反向电压,一般用VCEO或BVCEO表示。

2.集电极—基极反向击穿电压 该电压是指当晶体管发射极开路时,其集电极与基极之间的最大允许反向电压,用VCBO或BVCBO表示。

3.发射极—基极反向击穿电压 该电压是指当晶体管的集电


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8512886.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-17
下一篇 2023-04-17

发表评论

登录后才能评论

评论列表(0条)

保存