在物理学中,载流子指可以自由移动的带有电荷的物质微粒,如电子和离子。在半导体物理学中,电子流失导致共价键上留下的空位(空穴引)被视为载流子。
金属中为电子,半导体中有两种载流子即电子和空穴。在电场作用下能作定向运动的带电粒子。如半导体中的自由电子与空穴,导体中的自由电子,电解液中的正、负离子,放电气体中的离子等。
载流子与半导体的关系
载流子,是承载电荷的、能够自由移动以形成电流的物质粒子。半导体的性质跟导体和绝缘体不同,是因为其能带结构不同;
而半导体的导电能力可以控制,主要是因为其载流子的种类和数量与导体和绝缘体不同,并且可以受到控制,其调节手段就是“掺杂”,即往纯净的半导体中掺入杂质,来改变其载流子数量、分布和运动趋势,从而改变整体导电性能。
绝缘体和金属导体的载流子是电子,而半导体除了电子外,还有一种载流子叫空穴。另外还有正离子、负离子也都带有电荷,但是在半导体中,它们一般不会流动,所以认为半导体的载流子就是电子和空穴这两种。
电子作为载流子容易理解,因为物质中的原子是由原子核和电子组成的,在一定条件下挣脱原子核束缚的自由电子可以运动,因而产生电流。
而所谓空穴,就是由于电子的缺失而留下的空位。这就好像车与车位的关系,假设有一排共5个车位,从左边开始按顺序停了4辆车,最右边有1个空位,如果最左边的车开到最右边的空位上去,那么最左边的车位就空出来了。
看起来好像是空位从右边到了左边,这是一种相对运动,车从左到右的移动,相当于空位从右到左的移动。同样道理,带负电的电子的运动,可看作是带正电的空穴的反方向运动。
在没有杂质的纯净半导体中,受热激发产生的移动的电子数量和空穴数量是相等的,因为带负电的电子和带正电的空穴会进行复合,在数量大致相等的情况下,“产生”和“复合”会达到一个动态平衡,这样宏观上看来并没有产生有效电流。为了改善其导电性能,就引入了掺杂手段。
对集成电路来说,最重要的半导体材料是硅。硅原子有4个价电子,它们位于以原子核为中心的四面体的4个顶角上。这些价电子会与其他硅原子的价电子结合成共价键,大量的硅原子以这种方式互相结合,形成结构规律的晶体。
如果给它加入砷(或磷),砷最外层有5个电子,其中4个电子也会跟硅原子的4个价电子结合成共价键,把砷原子固定在硅材料的晶格中。此时会多出1个自由电子,这个电子跃迁至导带所需的能量较低,容易在硅晶格中移动,从而产生电流。
这种掺入了能提供多余电子的杂质而获得导电能力的半导体称为N型半导体,“N”为Negative,代表带负电荷的意思。
如果我们在纯硅中掺入硼(B),因为硼的价电子只有3个,要跟硅原子的4个价电子结合成共价键,就需要吸引另外的1个电子过来,这样就会形成一个空穴,作为额外引入的载流子,提供导电能力。这种掺入可提供空穴的杂质后的半导体,叫做P型半导体,“P”是Positive,代表带来正电荷的意思。
需要注意的是,掺入杂质后的半导体中仍然同时具有电子和空穴这两种载流子,只是各自数量不同。在N型半导体中,电子(带负电荷)居多,叫多数载流子,空穴(带正电荷)叫少数载流子。在P型半导体中,则反之:空穴为多数载流子,电子为少数载流子;可以分别简称为“多子”、“少子”。
一、多数载流子和少数载流子
在半导体中,电子和空穴作为载流子。数目较多的载流子称为多数载流子;在N型半导体中多数载流子是电子,而在P型半导体中多数载流子是空穴。数目较少的载流子称为少数载流子;在N型半导体中少数载流子是空穴,而在P型半导体中少数载流子是电子。
少数载流子在双极性晶体管和太阳能电池中起重要作用。不过,此种载流子在场效应管(FET)中的作用是有些复杂的:例如,MOSFET兼有P型和N型。晶体管涉及到源漏区,但这些少数载流子横穿多数载流子体。
不过在传送区内,横穿的载流子比其相反类型载流子的数目多得多(实际上,相反类型的载流子会被外加电场移除而形成耗尽层),因此按惯例为源漏选定的载流子是可采用的,而FET被称为“多数载流子”设备。
当电子遇到空穴时,二者复合后自由载流子就很快消失了。释放的能量可以是热,会加热半导体(热复合,半导体中废热的一个来源),或者释放光子(光复合,用于LED和半导体激光中)。
二、自由载流子浓度
自由载流子浓度是浓度自由载流子在掺杂半导体。它类似于金属中的载流子浓度,并且可以以相同的方式用于计算电流或漂移速度。
自由载流子是通过掺杂直接引入导带(或价带)并且没有被热促进的电子(或空穴)。由于这个原因,电子(空穴)不会通过在另一个能带中留下空穴(电子)来充当双载流子。换句话说,电荷载流子是可以自由移动(携带电荷)的粒子/电子。
以上内容参考 百度百科-载流子
P型半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成了P型半导体。
多数载流子:P型半导体中,空穴的浓度大于自由电子的浓度,称为多数载流子,简称多子。
少数载流子:P型半导体中,自由电子为少数载流子,简称少子。
N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置形成N型半导体。
多子:N型半导体中,多子为自由电子。
少子:N型半导体中,少子为空穴。
扩展资料:
N型半导体的特点:
半导体中有两种载流子,即价带中的空穴和导带中的电子,以电子导电为主的半导体称之为N型半导体,与之相对的,以空穴导电为主的半导体称为P型半导体。
“N”表示负电的意思,取自英文Negative的第一个字母。在这类半导体中,参与导电的 (即导电载体) 主要是带负电的电子,这些电子来自半导体中的施主。凡掺有施主杂质或施主数量多于受主的半导体都是N型半导体。例如,含有适量五价元素砷、磷、锑等的锗或硅等半导体。
由于N型半导体中正电荷量与负电荷量相等,故N型半导体呈电中性。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。
P型半导体的特点:
半导体中有两种载流子:导带中的电子和价带中的空穴。 如果某一类型半导体的导电性主要依靠价带中的空穴,则该类型的半导体就称为P型半导体。
“P”表示正电的意思,取自英文Positive的第一个字母。在这类半导体中,参与导电的 (即电荷载体) 主要是带正电的空穴,这些空穴来自半导体中的受主。因此凡掺有受主杂质或受主数量多于施主的半导体都是p型半导体。例如,含有适量三价元素硼、铟、镓等的锗或硅等半导体就是P型半导体。
由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。
参考资料来源:百度百科—N型半导体
参考资料来源:百度百科—P型半导体
半导体:电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质称为半导体: 半导体室温时电阻率约在1mΩ·cm~1GΩ·cm之间(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因上角标暂不可用,暂用当前方法描述),温度升高时电阻率则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成 半导体一个带正电的空位,称为空穴。导带中的电子和价带中的空穴合称电子- 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子- 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子- 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。多样性物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。分类半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。编辑本段特点半导体五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。★在光照和热辐射条件下,其导电性有明显的变化。晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。载流子:运载电荷的粒子称为载流子。导体电的特点:导体导电只有一种载流子,即自由电子导电。本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。当温度升高时,热运动加剧,挣脱共价键束缚的自由电子增多,空穴也随之增多(即载流子的浓度升高),导电性能增强;当温度降低,则载流子的浓度降低,导电性能变差。结论:本征半导体的导电性能与温度有关。半导体材料性能对温度的敏感性,可制作热敏和光敏器件,又造成半导体器件温度稳定性差的原因。杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。P型半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成了P型半导体。多数载流子:P型半导体中,空穴的浓度大于自由电子的浓度,称为多数载流子,简称多子。少数载流子:P型半导体中,自由电子为少数载流子,简称少子。受主原子:杂质原子中的空位吸收电子,称受主原子。P型半导体的导电特性:它是靠空穴导电,掺入的杂质越多,多子(空穴)的浓度就越高,导电性能也就越强。N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,形成N型半导体。多子:N型半导体中,多子为自由电子。少子:N型半导体中,少子为空穴。施子原子:杂质原子可以提供电子,称施子原子。N型半导体的导电特性:掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。结论:多子的浓度决定于杂质浓度。少子的浓度决定于温度。PN结的形成:将P型半导体与N型半导体制作在同一块硅片上, PN结的形成过程在它们的交界面就形成PN结。PN结的形成过程:如图所示,将P型半导体与N型半导体制作在同一块硅片上,在无外电场和其它激发作用下,参与扩散运动的多子数目等于参与漂移运动的少子数目,从而达到动态平衡,形成PN结。扩散运动:物质总是从浓度高的地方向浓度低的地方运动,这种由于浓度差而产生的运动称为扩散运动。空间电荷区:扩散到P区的自由电子与空穴复合,而扩散到N区的空穴与自由电子复合,所以在交界面附近多子的浓度下降,P区出现负离子区,N区出现正离子区,它们是不能移动,称为空间电荷区。电场形成:空间电荷区形成内电场。空间电荷加宽,内电场增强,其方向由N区指向P区,阻止扩散运动的进行。漂移运动:在电场力作用下,载流子的运动称漂移运动。电位差:空间电荷区具有一定的宽度,形成电位差Uho,电流为零。耗尽层:绝大部分空间电荷区内自由电子和空穴的数目都非常少,在分析PN结时常忽略载流子的作用,而只考虑离子区的电荷,称耗尽层。PN结的特点:具有单向导电性。编辑本段伏安特性曲线欢迎分享,转载请注明来源:内存溢出
评论列表(0条)