氮化镓主要还是用于LED(发光二极管),微电子(微波功率和电力电子器件),场效电晶体(MOSFET)。在被称作发光二极管的节能光源中,氮化镓已经使用了数十年。在一些平凡的科技产品,如蓝光碟片播放器里,氮化镓也有应用。但耐热和耐辐射的特性,让它在军事和太空领域应用广泛。如今,反d道导d雷达和美国空军用来追踪空间碎片的雷达系统“太空篱笆”也使用了氮化镓芯片。第一代
半导体是硅,主要解决数据运算、存储的问题;第二代半导体是以砷化镓为代表,它被应用到于光纤通讯,主要解决数据传输的问题;第三代半导体以氮化镓为代表,它在电和光的转化方面性能突出,在微波信号传输方面的效率更高,所以可以被广泛应用到照明、显示、通讯等各大领域。氮化镓(化学式GaN)被称为“终极半导体材料”,可以用于制造用途广泛、性能强大的新一代微芯片,属于所谓宽禁带(wide-bandgap,氮化镓的禁带宽度是3.4 eV电子伏特)半导体之列,是研制高效率、高功率微电子器件、光电子器件的新型半导体材料。氮化镓,分子式GaN,英文名称Gallium nitride,是氮和镓的化合物,是一种直接能隙(direct bandgap)的半导体,自1990年起常用在发光二极管中。此化合物结构类似纤锌矿,硬度很高。氮化镓的能隙很宽,为3.4电子伏特,可以用在高功率、高速的光电元件中,其单芯片亮度理论上可以达到过去的10倍。例如氮化镓可以用在紫光的激光二极管,可以在不使用非线性半导体泵浦固体
激光器(Diode-pumped solid-state laser)的条件下,产生紫光(405nm)激光。氮化镓具有的直接带隙宽、原子键强、热导率高、化学稳定性好、抗辐射能力强、具有较高的内、外量子效率、发光效率高、高强度和硬度(其抗磨力接近于钻石)等特点和性能可制成高效率的半导体发光器件——发光二极管(Light-emittingdiode,简称为LED)和激光器(Laserdiode,简称为LD)。并可延伸至白光LED和蓝光LD。抗磨力接近于钻石特性将有助于开启在触控屏幕、太空载具以及射频(RF) MEMS等要求高速、高振动技术的新应用。LED特别是蓝、绿光LED应用于大屏幕全彩显示、汽车灯具、多媒体显像、LCD背光源、交通信号灯、光纤通讯、卫星通讯、海洋光通讯、全息像显示、图形识别等领域。具有体积小、重量轻、驱动电压低(3.5-4.0V)、响应时间短、寿命长(100000小时以上)、冷光源、发光效率高、防爆、节能等功能。LD特别是蓝光LD因其具有短波长、体积小、容易制作高频调制等优点,可使现在的激光器读取器的信息存储量和探测器的精确性及隐蔽性都有较大提高,信息的寻道时间亦将大为缩短,在民用与军用领域有着巨大潜在用途,应用于光纤通讯、探测器、数据存储、光学阅读、激光高速印刷等领域,将会取代目前的红外光等激光器。白光LED是将蓝光LED与YAG荧光物质放在一起,其合成的光谱为白光,在不远的将来取代目前传统的白炽灯和日光灯,从而引起世界照明工业的革命。
你好,很高兴为你解答:
GaN的晶体结构主要有两种,分别是纤锌矿结构与闪锌矿结构。
GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700℃,GaN具有高的电离度,在Ⅲ—Ⅴ族化合物中是最高的(0.5或0.43)。在大气压力下,GaN晶体一般是六方纤锌矿结构。它在一个元胞中有4个原子,原子体积大约为GaAs的一半。因为其硬度高,又是一种良好的涂层保护材料。
氮化镓有哪些特点?
氮化镓号称第三代半导体核心材料。相对硅而言,氮化镓拥有更宽的带隙,宽带隙也意味着,氮化镓能比硅承受更高的电压,拥有更好的导电能力。简而言之两种材料在相同体积下,氮化镓比硅的效率高出不少。如果氮化镓替换现在所有电子设备,可能会让电子产品的用电量再减少10%或者25%。
可以制造哪些器件?
太远离生活的产品不说,采用氮化镓为材料基础做出的充电器,能够实现更好的功率,带来更小的体积。早期的氮化镓材料被运用到通信、军工领域,随着技术的进步以及人们的需求,氮化镓产品已经走进了我们生活中,在充电器中的应用也逐步布局开来。
氮化镓是目前全球最快功率开关器件之一,并且可以在高速开关的情况下仍保持高效率水平,能够应用于更小的变压器,让充电器可以有效缩小产品尺寸。比如导入USB PD快充参考设计,使目前常见的45W适配器设计可以采用30W或更小的外形设计。
评论列表(0条)