半导体功率器件静态参数测试仪系统 & 能测 IGBT. Mosfet. Diode. BJT......

半导体功率器件静态参数测试仪系统 & 能测 IGBT. Mosfet. Diode. BJT......,第1张

DCT2000半导体功率器件静态参数测试仪系统能测试很多电子元器件的静态直流参数(如击穿电压V(BR)CES/V(BR)DSs、漏电流ICEs/lGEs/IGSs/lDSs、阈值电压/VGE(th)、开启电压/VCE(on)、跨导/Gfe/Gfs、压降/Vf、导通内阻Rds(on))。

测试种类覆盖7 大类别26分类,包括“二极管类”“三极管类(如BJT、MOSFET、IGBT)”“保护类器件”“稳压集成类”“继电器类”“光耦类”“传感监测类”等品类的繁多的电子元器件。

高压源标配1400V(选配2KV),高流源标配100A(选配40A,200A,500A)

控制极/栅极电压40V,栅极电流10mA

分辨率最高至1mV / 1nA,精度最高可至0.5%

DCT2000半导体功率器件静态参数测试仪系统适用于功率器件测试还可测试“结电容”,支持“脉冲式一键加热”和“分选机连接”

第一部分:规格&环境

1.1、 产品信息

产品型号:DCT2000

产品名称:半导体功率器件静态参数测试仪系统

1.2、 物理规格

主机尺寸:深660*宽430*高210(mm)

主机重量:<35kg

1.3、 电气环境

主机功耗:<300W

海拔高度:海拔不超过4000m;

环境要求:-20℃~60℃(储存)、5℃~50℃(工作);

相对湿度:20%RH~75%RH (无凝露,湿球温度计温度 45℃以下);

大气压力:86Kpa~106Kpa;

防护条件:无较大灰尘,腐蚀或爆炸性气体,导电粉尘等;

电网要求:AC220V、±10%、50Hz±1Hz;

工作时间:连续;

第二部分:应用场景和产品特点

一、应用场景

1、 测试分析 (功率器件研发设计阶段的初始测试,主要功能为曲线追踪仪)

2、 失效分析 (对失效器件进行测试分析,查找失效机理。以便于对电子整机的整体设计和使用过程提出改善方案)

3、 选型配对 (在器件焊接至电路板之前进行全部测试,将测试数据比较一致的器件进行分类配对)

4、 来料检验 (研究所及电子厂的质量部(IQC)对入厂器件进行抽检/全检,把控器件的良品率)

5、 量产测试 (可连接机械手、扫码q、分选机等各类辅助机械设备,实现规模化、自动化测试)

6、 替代进口 (DCT2000半导体功率器件静态参数测试仪系统可替代同级别进口产品)

二、产品特点

1、程控高压源10~1400V,提供2000V选配;

2、程控高流源1uA~100A,提供40A,200A,500A选配;

3、驱动电压10mV~40V

4、控制极电流10uA~10mA;

5、16位ADC,100K/S采样速率;

6、自动识别器件极性NPN/PNP

7、曲线追踪仪,四线开尔文连接保证加载测量的准确

8、通过RS232 接口连接校准数字表,对系统进行校验

9、不同的封装形式提供对应的夹具和适配器(如TO220、SOP-8、DIP、SOT-23等等)

10、半导体功率器件静态参数测试仪系统能测很多电子元器件(如二极管、三极管、MOSFET、IGBT、可控硅、光耦、继电器等等);

11、半导体功率器件静态参数测试仪系统能实现曲线追踪仪(如击穿电压V(BR)CES/V(BR)DSs、漏电流ICEs/lGEs/IGSs/lDSs、阈值电压/VGE(th)、开启电压/VCE(on)、跨导/Gfe/Gfs、压降/Vf、导通内阻Rds(on) )

12、结电容参数也可以测试,诸如Cka,Ciss,Crss,Coss;

13、脉冲电流自动加热功能,方便高温测试,无需外挂升温装置;

14、Prober 接口、Handler 接口可选(16Bin),连接分选机最高效率1h/9000个;

15、半导体功率器件静态参数测试仪系统在各大电子厂的IQC、实验室有着广泛的应用;

第三部分:产品介绍

3.1、产品介绍

DCT2000半导体功率器件静态参数测试仪系统是由我公司技术团队结合半导体功率器件静态参数测试仪系统的多年经验,以及众多国内外测试系统产品的熟悉了解后,完全自主开发设计的全新一代“半导体功率器件静态参数测试仪系统”。软件及硬件均由团队自主完成。这就决定了这款产品的功能性和可靠性能够得到持续完善和不断的提升。

半导体功率器件静态参数测试仪系统脉冲信号源输出方面,高压源标配1400V(选配2KV),高流源标配100A(选配40A,200A,500A)栅极电压40V,栅极电流10mA,分辨率最高至1mV / 30pA,精度最高可至0.5%。程控软件基于Lab VIEW平台编写,填充式菜单界面。采用带有开尔文感应结构的测试插座,自动补偿由于系统内部及测试电缆长度引起的任何压降,保证测试结果准确可靠。产品可测试 Si, SiC, GaN 材料的 IGBTs, DIODEs, MOSFETs, BJTs, SCRs 等7大类26分类的电子元器件。涵盖电子产品中几乎所有的常见器件。无论电压电流源还是功能配置都有着极强的扩展性。

产品为桌面放置的台式机结构,由测试主机和程控电脑两大部分组成。外挂各类夹具和适配器,还能够通过Prober 接口、Handler 接口可选(16Bin)连接分选机和机械手建立工作站,实现快速批量化测试。通过软件设置可依照被测器件的参数等级进行自动分类存放。能够极好的应对“来料检验”“失效分析”“选型配对”“量产测试”等不同场景。

半导体功率器件静态参数测试仪系统产品的可靠性和测试数据的重复性以及测试效率都有着非常优秀的表现。创新的“点控式夹具”让 *** 作人员在夹具上实现一点即测。 *** 作更简单效率更高。测试数据可保存为EXCEL文本,方便快捷的完成曲线追踪仪。

3.2、人机界面(DCT2000半导体功率器件静态参数测试仪系统)

第四部分:功能配置

4.1、 配置选项

DCT2000半导体功率器件静态参数测试仪系统的功能配置如下

4.2、 适配器选型

DCT2000半导体功率器件静态参数测试仪系统的适配器有如下

4.3、 测试种类及参数

DCT2000半导体功率器件静态参数测试仪系统的测试种类和参数如下

(1)二极管类:二极管  Diode

Kelvin,Vrrm,Irrm,Vf,△Vf,△Vrrm,Cka,Tr(选配);

(2)二极管类:稳压二极管  ZD(Zener Diode)

Kelvin,Vz,lr,Vf,△Vf,△Vz,Roz,lzm,Cka;

(3)二极管类:稳压二极管  ZD(Zener Diode)

Kelvin、Vz、lr、Vf、△Vf、△Vz、Roz、lzm、Cka;

(4)二极管类:三端肖特基二极管SBD(SchottkyBarrierDiode)

Kelvin 、Type_ident 、Pin_test 、Vrrm、Irrm、Vf、△Vf、V_Vrrm、I_Irrm、△Vrrm、Cka、Tr(选配);

(5)二极管类:瞬态二极管  TVS

Kelvin 、Vrrm 、Irrm、Vf、△Vf、△Vrrm 、Cka ;

(6)二极管类:整流桥堆

Kelvin 、Vrrm、Irrm、Ir_ac、Vf、△Vf、△Vrrm 、Cka;

(7)二极管类:三相整流桥堆

Kelvin 、Vrrm 、Irrm、Ir_ac、Vf、△Vf、△Vrrm、Cka;

(8)三极管类:三极管

Kelvin 、Type_ident、Pin_chk 、V(br)cbo 、V(br)ceo 、V(br)ebo 、Icbo、lceo、Iebo、Hfe、Vce(sat)、Vbe(sat)、△Vsat、△Bvceo 、△Bvcbo 、Vbe、lcm、Vsd 、Ccbo 、Cces、Heater、Tr (选配)、Ts(选配)、Value_process;

(9) 三极管类:双向可控硅

Kelvin、Type_ident、Qs_chk、Pin_test、Igt、Vgt、Vtm、Vdrm、Vrrm、Vdrm rrm、Irrm、 Idrm、Irrm_drm、Ih、IL、C_vtm、△Vdrm、△Vrrm、△Vtm;

(10)三极管类:单向可控硅

Kelvin、 Type_ident、 Qs_chk、 Pin test、 lgt、 Vgt、 Vtm、 Vdrm Vrrm、 IH、IL、△Vdrm△Vrrm、Vtm;

(11)三极管类:MOSFET

Kelvin 、Type_ident、Pin_test、VGS(th) 、V(BR)Dss 、Rds(on) 、Bvds_rz、△Bvds、Gfs、Igss、ldss 、Idss zero 、Vds(on)、 Vsd、Ciss、Coss、Crss、Bvgs 、ld_lim 、Heater、Value_proces、△Rds(on) ;

(12)三极管类:双MOSFET

Kelvin、 Pin_chk、Ic_fx_chk、 Type_ident、 Vgs1(th)、 VGs2(th)、 VBR)Dss1、 VBR)Dss2、 Rds1(on)、 Rds2(on)、 Bvds1 rz、 Bvds2_rz、 Gfs1、Gfs2、lgss1、lgss2、Idss1、Idss2、Vsd1、Vsd2、Ciss、Coss、Crss;

(13)三极管类:JFET

Kelvin、VGS(off )、V(BR)Dss、Rds(on)、Bvds_rz、Gfs、lgss、 Idss(off)、 Idss(on)、 vds(on)、 Vsd、Ciss、Crss、Coss;

(14)三极管类:IGBT

Kelvin、VGE(th)、V(BR)CES、Vce(on)、Gfe、lges、 lces、Vf、Ciss、Coss、Crss;

(15)三极管类:三端开关功率驱动器

Kelvin、Vbb(AZ)、 Von(CL)、 Rson、Ibb(off)、Il(lim)、Coss、Fun_pin_volt;

(16)三极管类:七端半桥驱动器

Kelvin、lvs(off)、lvs(on)、Rson_h、Rson_l、lin、Iinh、ls_Volt、Sr_volt;

(17)三极管类:高边功率开关

Kelvin、Vbb(AZ)、Von(CL)、Rson、Ibb(off)、ll(Iim)、Coss、Fun_pin_volt;

(18)保护类:压敏电阻

Kelvin、Vrrm、 Vdrm、Irrm、Idrm、Cka、 △Vr

(19)保护类:单组电压保护器

Kelvin 、Vrrm、Vdrm、Irrm、Idrm、Cka、△Vr;

(20)保护类:双组电压保护器

Kelvin、Vrrm、Vdrm、Irrm、Idrm、Cka、△Vr;

(21)稳压集成类:三端稳压器

Kelvin 、Type_ident 、Treg_ix_chk 、Vout 、Reg_Line、Reg_Load、IB、IB_I、Roz、△IB、VD、ISC、Max_lo、Ro、Ext _Sw、Ic_fx_chk;

(22)稳压集成类:基准IC(TL431)

Kelvin、Vref、△Vref、lref、Imin、loff、Zka、Vka;

(23)稳压集成类:四端稳压

Kelvin、Type_ident、Treg_ix_chk、Vout、Reg_Line、Reg_Load、IB、IB_I、Roz、△lB、VD、Isc、Max_lo、Ro、Ext_Sw、Ic_fx_chk;

(24)稳压集成类:开关稳压集成器

选配;

(25)继电器类:4脚单刀单组、5脚单刀双组、8脚双组双刀、8脚双组四刀、固态继电器

Kelvin、Pin_chk、Dip6_type_ident、Vf、Ir、Vl、Il、Ift、Ron、Ton(选配)、Toff(选配);

(26)光耦类:4脚光耦、6脚光耦、8脚光耦、16脚光耦

Kelvin、Pin_chk、Vf、Ir、Bvceo、Bveco、Iceo、Ctr、Vce(sat)、Tr、Tf;

(27)传感监测类:

电流传感器(ACS712XX系列、CSNR_15XX系列)(选配);

霍尔器件(MT44XX系列、A12XX系列)(选配);

电压监控器(选配);

电压复位IC(选配);

曲线追踪仪

第五部分:性能指标

DCT2000半导体功率器件静态参数测试仪系统的性能指标如下

5. 1 、 电流/电压源 ( VIS ) 自带VI测量单元

(1)加压(FV)

量程±40V分辨率19.5mV精度±1% 设定值±10mV

量程±20V分辨率10mV精度±1% 设定值±5mV

量程±10V分辨率5mV精度±1% 设定值±3mV

量程±5V分辨率2mV精度±1% 设定值±2mV

量程±2V分辨率1mV精度±1% 设定值±2mV

(2)加流(FI)

量程±40A 分辨率19.5mA精度±2% 设定值±20mA

量程±4A 分辨率1.95mA精度±1% 设定值±2mA

量程±400mA分辨率1195uA精度±1% 设定值±200uA

量程±40mA分辨率119.5uA精度±1% 设定值±20uA

量程±4mA分辨率195nA精度±1% 设定值±200nA

量程±400uA分辨率19.5nA精度±1% 设定值±20nA

量程±40uA分辨率1.95nA精度±1% 设定值±2nA

说明:电流大于1.5A自动转为脉冲方式输出,脉宽范围:300us-1000us可调

(3)电流测量(MI)

量程±40A分辨率1.22mA精度±1% 读数值±20mA

量程±4A分辨率122uA精度±0.5% 读数值±2mA

量程±400mA分辨率12.2uA精度±0.5% 读数值±200uA

量程±40mA分辨率1.22uA精度±0.5% 读数值±20uA

量程±4mA分辨率122nA精度±0.5% 读数值±2uA

量程±400uA分辨率12.2nA精度±0.5% 读数值±200nA

量程±40uA分辨率1.22nA精度±1% 读数值±20nA

(4)电压测量(MV)

量程±40V分辨率1.22mV精度±1% 读数值±20mV

量程±20V分辨率122uV 精度±0.5% 读数值±2mV

量程±10V分辨率12.2uV 精度±0.5% 读数值±200uV

量程±5V分辨率1.22uV 精度±0.5% 读数值±20uV

5. 2 、 数据采集部分 ( VM )

16位ADC,100K/S采样速率

(1)电压测量(MV)

量程±2000V分辨率30.5mV精度±0.5%读数值±200mV

量程±1000V分辨率15.3mV精度±0.2%读数值±20mV

量程±100V分辨率1.53mV精度±0.1%读数值±10mV

量程±10V分辨率153uV精度±0.1%读数值±5mV

量程±1V分辨率15.3uV精度±0.1%读数值±2mV

量程±0.1V分辨率1.53uV精度±0.2%读数值±2mV

(2)漏电流测量(MI)

量程±100mA分辨率30uA精度±0.2%读数值±100uA

量程±10mA分辨率3uA精度±0.1%读数值±3uA

量程±1mA分辨率300nA精度±0.1%读数值±300nA

量程±100uA分辨率30nA精度±0.1%读数值±100nA

量程±10uA分辨率3nA精度±0.1%读数值±20nA

量程±1uA 分辨率300pA精度±0.5%读数值±5nA

量程±100nA分辨率30pA精度±0.5%读数值±0.5nA

(3)电容容量测量(MC)

量程6nF分辨率10PF精度±5%读数值±50PF

量程60nF分辨率100PF精度±5%读数值±100PF

5. 3 、 高压源 ( HVS ) (基本)12位DAC

(1)加压(FV)

量程2000V/10mA分辨率30.5mV精度±0.5%设定值±500mV

量程200V/10mA分辨率30.5mV精度±0.2%设定值±50mV

量程40V/50mA分辨率30.5mV精度±0.1%设定值±5mV

(2)加流(FI):

量程10mA分辨率3.81uA 精度±0.5%设定值±10uA

量程2mA分辨率381nA精度±0.5%设定值±2uA

量程200uA分辨率38.1nA精度±0.5%设定值±200nA

量程20uA分辨率3.81nA精度±0.5%设定值±20nA

量程2uA分辨率381pA精度±0.5%设定值±20nA

DCT2000 半导体功率器件静态参数测试仪系统 能测很多电子元器件 ( 如二极管、三极管、MOSFET、IGBT、可控硅、光耦、继电器等等 ) 产品广泛的应用在院所高校、封测厂、电子厂.....

1、目测法,mur80fu40dct有烧焦的迹象,mur80fu40dct直接判断损坏。

2、用数字万用表的通断档测量,发出蜂鸣声。mur80fu40dct是用半导体材料制成的一种电子器件。具有单向导电性能,即给mur80fu40dct阳极和阴极加上正向电压时,二极管导通。

数码相机的面世,使我们这些非专业摄影师拍出美丽的照片成为一件轻而易举的事。用数码相机拍出来得照片有着艳丽的色彩,清晰的画面,而且照片的处理方便而快捷。但数码相机是怎么工作的,以及这些工作原理和传统的胶片相机有何异同,了解的人就不是很多了。我们就按照片的形成过程,从镜头到CCD/CMOS感光器件再到图片处理器和储存系统,一步一步地来了解数码相机的工作原理。

镜头篇:

自然界存在许多种颜色的光线,但归纳起来,这些光线可以看作是红色、蓝色、绿色这三种基本颜色的不同强度的搭配。光我们可以简单地看作是一种“电磁波”,不同颜色的光有着不同的波长。

颜色是物体其本身的一种状态,我们经常说某东西是什么颜色。但是,严格说来,物体在我们的眼里呈现的颜色与环境照明条件有着因果关系。不同的物体反射的光谱不同,因而在我们的眼睛里有不同的颜色感觉。但这个是在用白色光的前提下才有的结论,如果我们换用不同颜色的光源来照射,那得到的结果肯定是不一样的。例如,我们平时所说的红色的布,如果用红色的光源来照射,那么它在我们的眼里就变成了白布!当包含各种颜色的光线束通过本身就有颜色的滤光镜片时,只有和它相同颜色的光线才能大量地通过,其他的光线都会被滤光镜吸收掉,转化为热能。

镜头的作用是将光线及聚集到感光期间上来。数码相机的感光器件很小,而且外部的光线有时无法产生足够的强度来使感光器件获得足够的光源信息。镜头就将外部的目标物体反射回来的光线通过其特定的形状,令光线折射到感光器件上。类似的工作状态有点像我们小时候在太阳光下用放大镜来烧蚂蚁。

镜头是由许多块镜片组成的,这些镜片的形状大都不相同,所以每一块镜片在镜头中的作用也不一定一样。一般来说,在不使镜头的透过率降低的情况下,采用多组的镜片可以使镜头的成像更接近现实世界。

上面我们提到一个“镜头的透过率”,简单讲来,就是光线可以有多少穿过镜头。镜头是由许多块表面光滑的镜片组成的,这些光滑的镜片本身就会对光线产生反射。这样会使进入镜头的光线总量减少,影响后面的CCD/CMOS感光器件的成像。现在的数码相机一般采用在镜片上镀一层特殊的膜来使镜片的反射尽可能减少。由于镀一种膜只能使某一种颜色的光线减少反射,而不可能使所有的光全部进入镜头。所以,我们一般的镀膜主要集中在减少绿色的反射,因为人的肉眼对绿色光非常敏感。还有一种镀膜是为了增强镜头的耐磨性,使物镜不那么容易被划伤。

采用多种镜片的作用主要是纠正单块镜片所造成的“失真”。由于透过镜片的光线有许多种,其本身在同一块镜片中的折射率就不同,透过镜片后会因为镜片的干扰而产生像差。像差有许多种,例如球面象差,晕光和失光。我们在一些手机或廉价的摄像头所拍摄的照片可以看到,照片中央有一个小圆圈,这是因为他们采用了一块镜片而无法对镜片的衍射现象进行校正造成像差。还有就是图像变形,这也是因为没有对光线的路径进行校正。

在确认要拍摄的对象以后,我们把相机的镜头对准目标物体。这时,物镜或物镜组就会根据自动对焦系统(由相机的中央控制器来完成,具体后面再介绍)的控制信号来调节它和感光器件的距离,使物体的像刚好落到CCD/CMOS上,这样才可以形成清晰的图像。镜头有一个非常重要的指标就是焦距。焦距就是镜头的“目镜”(最后的一块镜片)中央到通过的光线刚好可以汇聚那一点的距离。现在一些数码相机自带的镜头是可以改变焦距的,这类型的镜头可以改变镜头内部的镜片的距离,使相机镜头可以像望远镜那样把物体拉近或放大。但是,由于这类型镜头的镜片本身设计时的最好工作状态是正常焦距,所以变焦以后会由于镜片本身的一些不可改变物理形状而导致成像变形或产生某种畸变。

在光线通过的路径中,必须对光线的强度加以控制,以适应不同的拍摄环境。这个“通过光线控制”就是由光圈来完成。光圈是一组在镜头内部的“阀”,它由几块不透光材料围成圆圈型,通过改变这个圆圈的直径大小来控制通过镜头的光线量。光圈的主要作用有:1.调节光线,控制光线通过量;2.收小光圈能减少镜头的残余象差;3.收小光圈能增长景深范围以及使入射的光线均匀,避免图像四角发暗的现象;4.利用大光圈可减小景深范围以达到虚化焦点以外的形象,达到突出主题的作用。景深通俗讲就是目标物体后面的景物能否清晰成像。光圈一般用F来表示,例如F8/F5.6等。后面的数值越大,表示可透过的光线越少,光圈的直径也越小。

光圈的控制一般是自动的,即中央控制器通过测光系统来给出这个快门速度和感光度下的最佳的光圈数,然后驱动光圈改变数值。在一些相机上还有手动模式,用户自己可以改变光圈数。

CCD/CMOS传感器篇:

CCD/CMOS传感器是数码相机最重要的器件之一,也是数码相机根本区别于传统胶片相机的特征。CCD的全称是Charge Couple Device,译过来就是“光电荷耦合器件”,CMOS的全称是Complementary Metal-Oxide Semiconductor,有“互补金属氧化物半导体”的意思。CCD和CMOS的工作原理有一个共通点,那就是都是用光敏二极管来作为光-电信号的转化元件。

前面已经讲过,不同颜色的光线透过某一种颜色滤光镜的总量是不是一样的。当我们在一个光敏二极管上安装一个绿色滤镜时,穿过一定是绿色的光线,但它们的深浅可能因入射光线的颜色而有所不同。所以,我们用四个光敏二极管来获取某物体的反射光线。R单元可以获取红色的光线;B单元可以获取蓝色的光线;G单元可以获取绿色的光线。将四个单元的信号(两个G单元各取50%)进行处理就可以获得原始光线的颜色。

CCD传感器有一个重要的工作特征:CCD传感器输出的是连续的电流信号。CCD设计时没有像CMOS那样在周围设置信号放大器,而是设置一个缓冲器,将一行的信号按一定的时钟周期连接成连续变化的电流信号输出。在输出端由图像处理器依照时钟信号的周期来确定信号的物理位置。

光敏二极管属于模拟元件,对于它所接收的强弱不同的光信号可以输出不定值的连续电流信号或电压信号。将这些信号进行量化,亦即“数码化”,就是将电流信号或电压信号按强度的不同划分等级。例如,将光敏二极管受到(一定值)最大强度的光线时输出的电压信号设为第255级;将无光线时照射时社为第1级。这样,最大和最低之间有256个等级,图像处理器对中间值的信号采取类似“四舍五入”的方法对信号强度进行等级划分,这样最终将连续的变化的模拟电流/电压信号变成了离散稳定的数字信号。现在的数码相机一般就是按每个光敏二极管输出的信号可以量化为256级来进行计算的,在这种状态下,三个光敏二极管一共可以有256*256*256种颜色搭配。因为256实质上就是一个二进制8位数,所以256色就是一个8bit通道,故这样的数码相机就是8bit*8bit*8bit=24bit。

CMOS传感器亦是一种采用光敏二极管来担任由光信号到电信号的转换工作的,不同的是,CMOS输出的是电压信号。传感器的每一个光敏二极管都有一个独立的放大器,这是因为传感器的制造材料不能像CCD那样,可以阻止电子在上面自由走动,因而CMOS传感器的信号互相干扰非常厉害,产生了许多寄生干扰。为了尽量将光敏二极管输出的极其微弱和容易受干扰的电压信号放大,必须在光敏二极管附近设置一个放大器来放大后再输出,这样即使干扰,影响也微弱一些。但这些放大器的参数很难完全一致,它们参数的不一致使最后计算出来的结果产生了一些差异也是这个原因,我们看到许多采用CMOS作为传感器的摄像头或低档数码相机的图像有许多白色的噪点或其他颜色的色斑,那就是信号互相干扰而导致放大器不能正确放大信号的结果。

在数码相机中,感光度的调节是通过改变光敏二极管的放大器的放大率来实现的。例如,在光线不足的情况下,我们可以使信号放大器的放大率提高,使后面的模拟/数字转换器可以获得更高的输出电压/电流信号。相对于不调节放大率,这样可以获得亮度信号更强的画面。

在一般的应用类数码相机中,传感器一般都是根据上述的原理制成的,最多只是在光敏二极管的排列上做些文章。

中央控制器篇:

中央是数码相机的大脑,数码相机的一切动作,例如开机自检、错误处理等,都由中央控制器发出。中央控制器是一块可编程的DSP(Digital Signal Processing 数字信号处理),在外围或其内部,有一个小容量的FLASH,负责存放一些程序语句。中央控制器按照这些程序语句对相机的各种 *** 作做出反应,例如对环境的光线强度做出判断、调节感光二极管放大器的放大率、用不用闪光灯、采用何种快门速度和光圈等。

图像处理器篇:

在图像处理器中除了要把每一个像素点的颜色计算出来外,还要把它们按照一定的时钟周期进行排列,组成完整的图像。在某些场合还要对图像进行一定格式的压缩,使图像的容量更小。图象处理器实质上也是一块可编程的DSP处理器。事实上,图像处理器算法的好坏对处理出来的图像质量影响很大。

在对电压/电流信号进行量化以后,图象处理器要对像素的颜色进行计算。例如,在R单元得到的数值是255,在G单元得到的是153,在B单元得到的是51,那么,图象处理器按照本身定义的算法,将以上三个值代入,得到一个R值为255、G值为153、B值为51的颜色。

在图像处理的过程中,通常会用到“插值计算”这个算法。所谓的插值,就是在离散数据之间补充一些数据,使这组离散数据能够符合某个连续函数。利用插值可通过函数在有限个点处的取值状况,估算该函数在别处的值,即通过有限的数据,以得出完整的数学描述。通俗地讲,我们把一张图片的像素值增多,就是运用了插值算法。图片的像素本来就是那么多,但我们却可以用软件把某两个像素的中间值计算出来,然后插在这两个像素的中间。这种方法不能真正地使图片的分辨细节增加,但通过插值计算而来的像素通常不会和真实情况相差太远,在某些场合(例如想把照片放大但又不想出现马赛克锯齿)还是有一定的用处的。现在一些相机的广告说它的产品最高可以拍出达到多少多少像素的照片,这时我们就要注意它是否是有效像素;如果只是经过插值处理的,那是没多大意义的,因为从理论上来说,插值计算是可以无限的。

这样,生成的图片按照产生的光敏二极管的物理位置来进行排列,就可以得到一张完整的,未经压缩的图片,存放在随机动态内存RAM中,如果没有压缩要求,它们就会被写入FLASH中保存或通过接口传输到其他设备。

JPG是数码相机在压缩图片时首选的压缩格式,这是因为JPG有着极高的压缩比,并且可以根据使用者的容量要求来设置图像质量。就现实而言,一张内容复杂的而未经压缩的TIFT图片和内容相同而肉眼难以觉察它们的区别的JPG的容量比例大概可以达到5:1甚至更高。

JPG的压缩方法可大致分为三个步骤(注意,离散余弦变换针对的是R、G、B中的其中一个值,而不是针对R、G、B的处理后的值,所以,离散余弦变换的系数就是一个彩色分量编码,由1到255):1、进行离散余弦变换(DCT),去掉图像中多余的数据;2、对图像进行量化,量化是根据人的眼睛的生理特点而采取的特定结构排列方式,量化表就是确定这些排列方式的标准化的表格;3、编码,用统计的方式对数据本身进行压缩,使压缩出来的图像的数据流可以减到最小。在离散余弦变换的过程中,首先将图像分成8*8个小像块,然后对每个像块逐一进行DCT变换。DCT变换是一种正交变换,它有如下特点:第一、没有失真,整个过程是可逆的;第二、可以去除相关性;第三、能量重新分布且集中在图像的左上角呈现倒三角型分布。以一个8*8 的小像块为例,它一共包含8*8=64个样品数值,在经DCT变换后仍然是64个样品数值,这并不能达到码率压缩的目的;但在量化取整时,量化表符合人眼特性,即对图像左上角的低频分量设置较细的量化,而对其余部分即高频分量设置较粗的量化,这时,网格内大部分系数为零;然后,再用“Zig-Zag”扫描进行Z字型读出数据后,这一串数据中只有前面部分数据较大,而其余部分数据较小甚至为零,这时采用零游程编码就可以让数码率得到有效的压缩。在一些对比鲜明的地方,例如一些边界,我们会发现那些像块的像素根本就对不齐;还有一些“晕圈”、“幻影”现象,就是对小像块进行量化的过程出现的,但如果采用的压缩率比较低,这些失真很小,我们一般是不会觉察的。量化以后,就要对图像进行编码,就是对一连串的数据进行排队,利用概率的原理对数据进行无损性压缩。霍夫曼编码是编码中应用最广泛的一种编码方法,是一种统计编码,一般人们所说的可变字长编码就是指霍夫曼编码。霍夫曼编码需要事先约定并存成编码表,便于以后对照,在解码时才能正确找出编码所代表的意思。它具体做法是对一数据串先按符号出现的概率大小进行排队,再把两个最小的概率相加作为新的概率和剩余的概率重新排队,如此重复,直到最后概率之和为1。每次相加时都将“0”和“1”赋予相加的两个概率,读出时由该符号开始一直沿续到最后的“1”,将路线上所遇到的“0”和“1”按最低位到最高位的顺序排好就是该符号的霍夫曼编码。这样产生的二进制数就是JPEG的实质性数据了。但我们一般不会就这样把图像传输出去,还要进行组织数据流和打包工作。组织数据流是把各种标记代码和编码后的图像数据组成一帧一帧的数据,这样做的目的是为了便于传输、存储和译码器进行译码;打包就是对编码产生的二进制数进行一些必要的说明,使解码器可以正确解码出图像。一般的打包还包括相机在拍摄这张照片时的一些数据,例如这台相机的型号/光圈/快门/分辨率/日期等。然后,这些数据就可以传输到接口电路,或写入FLASH或传输到外部的其他处理设备。

存储器篇:

存储器在数码相机一般是外设,其内部一般只会安装很小容量的FLASH芯片,这对拍摄高分辨率的照片来说是远远不够的。一般的存储器有CF(Compact Flash)、SM(Smart Media)、MMC(Multi Media Card)、SDC(Secure Digital Card)、MSD(Memory Stick Duo)、IBM的微型硬盘等。但就一般而言,这些存储器除了IBM的产品以外,其他的都是采用闪存FLASH来作为存储部件的。我们就从FLASH的内部微观结构来看它是怎么保存数据的。

我们知道,二进制数的保存主要通过一个简单的开关就可以达到。FLASH也是这样,它的内部就是一串串不怕断电的“开关”,这些“开关”的开、断就代表一个二进制数0、1,那么一串串的开关就可以表示很多个二进制数,再对这些二进制数进行转换,就可以得到我们平时所见的有含义的数据了。

FLASH芯片是由许多个绝缘栅MOS管阵列按照一定的排列顺序构成的。FLASH芯片的“开/关”主要也是通过这些MOS管来进行的。绝缘栅MOS管的底层是一个晶体管的NP结,在这个NP结的上面有一个被场氧化物所包围的多晶硅浮空

栅。这个浮空栅的“浮空”构成了MOS管的源极、漏极之间的导电沟。如果这个浮空栅上有足够的电荷存在而不用依赖电源,那么就可以使MOS管的源极、漏极导通,在断电的情况下也可以达到保存数据的目的。在MOS管的源极和栅极之间加一个正向的电压,使浮空栅上的电荷向源极扩散,那么源极、漏极不导通;如果在源极和栅极之间加一个正向的电压U-1,但同时也在源极和漏极之间加一个正向的电压U-2,而且U-2总是小于U-1,那么源极上的电荷就向栅极上扩散,使浮栅带上电荷,这样就可以使源极、漏极导通。因为浮栅是“浮”空的,没有放电回路,浮栅上的电荷可以在断电的情况下很长时间不向其他地方扩散,使源极和漏极保持“开/关”。

这样,控制器通过一定的接口和图形处理器连接。在接到写入命令以后,就控制某个MOS管的源极和栅极、源极和漏极电源的开或关,使其中的MOS管导通或断开,从而达到存储数据的目的。

通过上面的分析,我们大致了解了数码相机各个部分的工作原理。虽然现在市面上有一些产品宣称采用了许多所谓的新技术,性能如何如何优于其他产品。但数码相机的基本工作原理还是差不多的,那些新技术大多数也是一些小打小闹的“改良”,并未真正改变数码相机的基本工作原理。

数码相机的平民化是现代人们的福音。数码相机、数码摄像机的出现让更多的人享受艺术的乐趣。艺术不再是那些扛着昂贵的单反相机、有着雄厚经济实力的人的专利。伴随着降价潮,越来越多的人开始用上了高质量的数码相机,用数码相机高速、高质量地记录我们身边转纵即逝的故事。正是这些随手拍下的故事,使我们这个时代的气息,可以永恒地留在人们的记忆中。我们不得不说:技术,改变的是世界。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8564216.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-18
下一篇 2023-04-18

发表评论

登录后才能评论

评论列表(0条)

保存