光解水制氢的光解水的原理

光解水制氢的光解水的原理,第1张

光催化反应可以分为两类“降低能垒”(down hil1)和“升高能垒”(up hil1)反应。光催化氧化降解有机物属于降低能垒反应,此类反应的△G<0,反应过程不可逆,这类反应中在光催化剂的作用下引发生成O2-、HO2 、OH·、和H+ 等活性基团。水分解生成H2和O2则是高能垒反应,该类反应的△G>0(△G=237 kJ/mo1),此类反应将光能转化为化学能。

要使水分解释放出氢气,热力学要求作为光催化材料的半导体材料的导带电位比氢电极电位EH+/H2稍负,而价带电位则应比氧电极电位Eo2/H2O稍正。光解水的原理为:光辐射在半导体上,当辐射的能量大于或相当于半导体的禁带宽度时,半导体内电子受激发从价带跃迁到导带,而空穴则留在价带,使电子和空穴发生分离,然后分别在半导体的不同位置将水还原成氢气或者将水氧化成氧气。Khan等提出了作为光催化分解水制氢材料需要满足:高稳定性,不产生光腐蚀;价格便宜;能够满足分解水的热力学要求;能够吸收太阳光。

其原理是,在催化剂存在时,吸收太阳光辐射使水分解为氢气和氧气。

植物的光合作用是在叶绿素上进行的。1968年,科学家发现了“叶绿素脂双层膜”的光电效应,从而证明了光合作用过程的半导体电化学机理。受此启发,将二氧化钛(TiO2)晶体电极和铂黑(Pt)电极浸在水中,组成光电化学电池。当太阳光辐射半导体材料二氧化钛表面时,因光电效应产生的电流将水分解,释放出氢气。这一方法是由日本科学家本多等人于1972年发现的。但二氧化钛只能吸收太阳光中紫外和近紫外部分,所以能量转换率还不到1%。近年来,研制成功用钛酸锡晶体及氧化钨晶体作阳极,效率分别达到20%和40%。由此可见,选择高效型的电极材料是提高转换率的关键。

一般需要二氧化锰作为催化剂

光子与水的电子发生能量交换

使电子活化

激发

水中的氢离子变的不稳定

向游离状态发展

最后

突破临界值

成为氢气

氧原子也是如此


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8579483.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-18
下一篇 2023-04-18

发表评论

登录后才能评论

评论列表(0条)

保存