西安炬光 科技 股份有限公司(以下简称“炬光 科技 ”)近日公布更新后的招股说明书,拟公开发行新股2249万股,募资约10亿元。
红星资本局从招股书发现,华为旗下哈勃投资曾于2020年9月参与公司增发,短短5个月后炬光 科技 即提交上市申请,或有“突击入股”之嫌。
炬光 科技 ,图据官网
募资10亿,近半用于“补血”
炬光 科技 是一家专业从事高功率半导体激光器、激光光学元器件、光子应用模块和系统的研发、生产和销售的国家级高新技术企业。公司牵头承担国家重大科学仪器设备开发专项等国家重大 科技 项目,以及牵头制定《半导体激光器总规范》《半导体激光器测试方法》两项国家标准。公司现已进入顶级光刻企业荷兰阿斯麦(ASML.US)、芯片巨头台积电(TSM.US)的供应链中。
早在2016年1月,炬光 科技 就曾经在新三板挂牌交易,但不到两年就终止挂牌,如今已转战科创板。红星资本局注意到,在其拟募集资金中,有2.44亿元用于东莞微光学及应用项目(一期),1.67亿元用于激光雷达发射模组产业化项目,1.5亿元用于研发中心建设项目。 剩余4.5亿元均用于补充流动资金,也就是近半募资要用于“补血”, 这也引发关注。
炬光 科技 近半募资补充流动资金
通常,监管层支持募集资金要尽量多用于公司主业项目建设等,而不太支持将大量募资补充流动资金。虽然一定比例“补流”能够提升公司抗风险能力,但是占比过高,说明公司资金链紧张,甚至有“圈钱”之嫌。炬光 科技 也对此作出说明:一是未来业务增长测算至2023年底,需要增加营运资金3.87亿元;二是2021-2023年规划研发投入2.75亿元。故本次募集4.5亿元补充流动资金具有合理性和必要性。
报告期内(2018-2021年上半年),炬光 科技 营业收入分别为3.55亿元、3.35亿元、3.6亿元及2.18亿元,同期归母净利润为1866.61万元、-8043.05万元、3487万元及3332.49万元。从近几年营收变动发现,公司的成长性并不突出,保持在3.5亿元左右;不过盈利状况不断向好,净利润呈逐年上升趋势。
报告期内,公司研发费用分别为5458.09 万元、7487.05万元、6989.71万元和3523.62万元,占营业收入的比例分别为 15.38%、22.35%、19.42%和 16.19%。公司研发投入保持较高的水平,研发费用率高于同行业可比公司均值,主要系公司专注于光子技术的研究和应用开发,围绕“产生光子、调控光子和提供光子技术应用解决方案”进行全方位产品布局。
截至2020年12月31日,炬光 科技 拥有已授权专利403项,包括美国、欧洲、日本、韩国等境外专利108项,境内发明专利117项、实用新型专利150项和外观设计专利28项,发明专利超过5项。
依赖政府补助,子公司存“商誉雷”
炬光 科技 十分依赖政府补助和各种税收优惠等。招股书显示, 报告期内公司获得政府补助分别为1718.57万元、1529.8万元、1699.59万元和1194.52万元,三年半获得政府补助6000多万元。同时,报告期内税收优惠分别为264.95万元、998.68万元、511.70万元和790.63万元。
报告期获政府补助6000多万元
公司表示,政府补助是否能持续取得、能否维持在较高水平,存在不确定性;税收优惠政策符合相关法律法规的规定,具有可持续性。
炬光 科技 一直秉承国际化经营的发展理念,2017年3月公司以2.255亿元收购德国LIMO,从而获得多项核心光学技术。LIMO位于德国多特蒙德,是世界领先的微光学供应商,大量产品销往德国、日韩、美国等地区,海外客户是公司重要的收入和盈利来源。报告期内,公司主营业务收入中境外收入分别为2.14亿元、1.81亿元、1.89亿元和9160.51万元,占主营业务收入比例分别为 61.38%、54.88%、53.19%和 42.51%。
公司表示,跨国经营受国际政治环境、国家间贸易政策等影响较大,如果未来国际政治环境、经济环境和贸易政策发生重大变化,公司的生产经营和盈利能力将受到影响。
红星资本局注意到,炬光 科技 收购德国LIMO形成了较高的商誉,如果商誉减值将会对炬光 科技 业绩造成不利影响。事实上,商誉减值的风险已经出现。 LIMO在2019年度受德国经济下滑和对下游光纤激光器行业销售收入下降的影响,光学系统业务收入大幅下降。经审慎评估后,炬光 科技 2019年计提商誉减值5708.26万元。
如今,这颗“商誉雷”还未爆完,截至2021年6月,炬光 科技 商誉账面价值仍有7655.51万元,也主要因德国LIMO形成。
报告期各期末,公司存货账面价值分别为1.5亿元、1.3亿元、1.41亿元和1.46亿元,占各期末流动资产的比例分别为40.95%、41.90%、28.65%和 29.8%,存货绝对金额较大,占流动资产比例较高。公司存货主要由原材料、在制品、自制半成品及库存商品等构成,存在一定的存货跌价风险。
除存货账面价值较高外,炬光 科技 应收账款也在增加。报告期各期末,公司应收账款账面余额分别为6821.43万元、7718.36万元、8068.87万元和1.1亿元,呈现逐年增长趋势。主要系公司报告期内业务规模的增长,应收账款规模随之增加。但账龄在1年以内应收账款比例在90%以上,表明应收账款质量较好。
华为哈勃被指“突击入股”
本次发行前,刘兴胜直接持有公司17.72%的股份,并通过与王东辉、西安宁炬、西安新炬等签署一致行动人协议,间接控制炬光 科技 14.27%股份的表决权,合计控制了炬光 科技 31.99%股份的表决权,对炬光 科技 形成控制,为炬光 科技 的控股股东和实际控制人。
刘兴胜1973年出生,海归博士,曾任美国康宁公司高级研究科学家、美国恩耐公司工艺工程技术总监,2007年至2015年任中国科学院西安光学精密机械研究所研究员、博士生导师,2008年至今任炬光 科技 董事长兼总经理。刘兴胜一直从事高功率激光器的研究,2009年入选新世纪百千万人才工程国家级人选。
炬光 科技 在接受IPO辅导期间,曾进行了一轮股份增发。2020年9月,哈勃投资、聚宏投资、西安宁炬和西安新炬以25元/股的价格,分别认购炬光 科技 相应增发股份。 而哈勃投资正是华为旗下的投资公司,主要从事创业投资业务,此番以5000万元认购炬光 科技 增发的200万股。
华为哈勃被指“突击入股”
西安宁炬、西安新炬为刘兴胜实际控股的公司,也是其员工持股平台。聚宏投资股东为王璜亮和闫小明,闫小明先于2019年8月以自然人身份进入炬光 科技 ,2020年3月将持有的股份转让给深圳明睿日,2020年8月再以PE机构的形式重返并间接持有炬光 科技 。而深圳明睿日的股东也有王璜亮,两家有关联关系。
相比之下,华为哈勃参与股份增发更引人注目,为何华为要青睐炬光 科技 ?是否看中其激光雷达技术在无人驾驶领域的应用?值得一提的是,今年4月,华为与北汽新能源旗下品牌极狐合作,推出了首款搭载华为HI自动驾驶系统的车型“极狐阿尔法S”。
而在炬光 科技 上市前最后一轮增发结束,短短5个月后的2021年2月即向科创板提交上市申请,这也让华为哈勃、聚宏投资等股东背上了“突击入股”的嫌疑。对于监管层来说,有关IPO公司在临近上市前入股或低价取得股份,上市后获取巨大利益的行为,将予以重点关注。
编辑 余冬梅
(下载红星新闻,报料有奖!)
在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。
像晶体二极管一样,半导体激光器也以材料的p-n结特性为基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。 早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。
半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为0.6~1.55微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到0.46微米的输出,而波长0.50~0.51微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。
光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。
20世纪60年代初期的半导体激光器是同质结型激光器,它是在一种材料上制作的pn结二极管在正向大电流注人下,电子不断地向p区注人,空穴不断地向n区注人.于是,在原来的pn结耗尽区内实现了载流子分布的反转,由于电子的迁移速度比空穴的迁移速度快,在有源区发生辐射、复合,发射出荧光,在一定的条件下发生激光,这是一种只能以脉冲形式工作的半导体激光器。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAlAs所组成,最先出现的是单异质结构激光器(1969年).单异质结注人型激光器(SHLD)是利用异质结提供的势垒把注入电子限制在GaAsP一N结的P区之内,以此来降低阀值电流密度,其数值比同质结激光器降低了一个数量级,但单异质结激光器仍不能在室温下连续工作。
1970年,实现了激光波长为9000&Aring:室温连续工作的双异质结GaAs-GaAlAs(砷化镓一镓铝砷)激光器。双异质结激光器(DHL)的诞生使可用波段不断拓宽,线宽和调谐性能逐步提高。其结构的特点是在P型和n型材料之间生长了仅有0. 2 Eam厚,不掺杂的,具有较窄能隙材料的一个薄层,因此注人的载流子被限制在该区域内(有源区),因而注人较少的电流就可以实现载流子数的反转。在半导体激光器件中,比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs二极管激光器。
随着异质结激光器的研究发展,人们想到如果将超薄膜(<20nm)的半导体层作为激光器的激括层,以致于能够产生量子效应,结果会是怎么样?再加之由于MBE,MOCVD技术的成就。于是,在1978年出现了世界上第一只半导体量子阱激光器(QWL),它大幅度地提高了半导体激光器的各种性能.后来,又由于MOCVD,MBE生长技术的成熟,能生长出高质量超精细薄层材料,之后,便成功地研制出了性能更加良好的量子阱激光器,量子阱半导体激光器与双异质结(DH)激光器相比,具有阑值电流低、输出功率高,频率响应好,光谱线窄和温度稳定性好和较高的电光转换效率等许多优点。
QWL在结构上的特点是它的有源区是由多个或单个阱宽约为100人的势阱所组成,由于势阱宽度小于材料中电子的德布罗意波的波长,产生了量子效应,连续的能带分裂为子能级.因此,特别有利于载流子的有效填充,所需要的激射阅值电流特别低.半导体激光器的结构中应用的主要是单、多量子阱,单量子阱(SQW)激光器的结构基本上就是把普通双异质结(DH)激光器的有源层厚度做成数十nm以下的一种激光器,通常把势垒较厚以致于相邻势阱中电子波函数不发生交迭的周期结构称为多量子阱(MQW ).量子阱激光器单个输出功率现已大于1w,承受的功率密度已达l OMW/cm3以上)而为了得到更大的输出功率,通常可以把许多单个半导体激光器组合在一起形成半导体激光器列阵。因此,量子阱激光器当采用阵列式集成结构时,输出功率则可达到l00w以上.高功率半导体激光器(特别是阵列器件)飞速发展,已经推出的产品有连续输出功率5 W,10W,20W和30W的激光器阵列.脉冲工作的半导体激光器峰值输出功率50w. 120W和1500W的阵列也已经商品化.一个4. 5 cm x 9cm的二维阵列,其峰值输出功率已经超过45kW.峰值输出功率为350kW的二维阵列也已间世。 从20世纪70年代末开始,半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器.另一类是以提高光功率为目的的功率型激光器.在泵浦固体激光器等应用的推动下,高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W以上,均可称之谓高功率半导体激光器)在20世纪90年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出已达到600W[61.如果从激光波段的被扩展的角度来看,先是红外半导体激光器,接着是670nm红光半导体激光器大量进入应用,接着,波长为650nm,635nm的问世,蓝绿光、蓝光半导体激光器也相继研制成功,10mw量级的紫光乃至紫外光半导体激光器,也在加紧研制中[a}为适应各种应用而发展起来的半导体激光器还有可调谐半导体激光器,电子束激励半导体激光器以及作为“集成光路”的最好光源的分布反馈激光器(DFB一LD),分布布喇格反射式激光器(DBR一LD)和集成双波导激光器.另外,还有高功率无铝激光器(从半导体激光器中除去铝,以获得更高输出功率,更长寿命和更低造价的管子)、中红外半导体激光器和量子级联激光器等等.其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出光束进行调制.分布反馈(DF)式半导体激光器是伴随光纤通信和集成光学回路的发展而出现的,它于1991年研制成功,分布反馈式半导体激光器完全实现了单纵模运作,在相干技术领域中又开辟了巨大的应用前景它是一种无腔行波激光器,激光振荡是由周期结构(或衍射光栅)形成光藕合提供的,不再由解理面构成的谐振腔来提供反馈,优点是易于获得单模单频输出,容易与纤维光缆、调制器等耦合,特别适宜作集成光路的光源。
单极性注入的半导体激光器是利用在导带内(或价带内)子能级间的热电子光跃迁以实现受激光发射,自然要使导带和价带内存在子能级或子能带,这就必须采用量子阱结构.单极性注入激光器能获得大的光功率输出,是一种商效率和超商速响应的半导体激光器,并对发展硅基激光器及短波激光器很有利.量子级联激光器的发明大大简化了在中红外到远红外这样宽波长范围内产生特定波长激光的途径.它只用同一种材料,根据层的厚度不同就能得到上述波长范围内的各种波长的激光.同传统半导体激光器相比,这种激光器不需冷却系统,可以在室温下稳定 *** 作.低维(量子线和量子点)激光器的研究发展也很快,日本okayama的GaInAsP/Inp长波长量子线(Qw+)激光器已做到9OkCW工作条件下Im =6.A,l =37A/cm2并有很高的量子效率.众多科研单位正在研制自组装量子点(QD)激光器,该QDLD已具有了高密度,高均匀性和高发射功率.由于实际需要,半导体激光器的发展主要是围绕着降低阔值电流密度、延长工作寿命、实现室温连续工作,以及获得单模、单频、窄线宽和发展各种不同激射波长的器件进行的。 20世纪90年代出现并特别值得一提的是面发射激光器(SEL),早在1977年,人们就提出了所谓的面发射激光器,并于1979年做出了第一个器件,1987年做出了用光泵浦的780nm的面发射激光器.1998年GaInAIP/GaA。面发射激光器在室温下达到亚毫安的网电流,8mW的输出功率和11%的转换效率[2)前面谈到的半导体激光器,从腔体结构上来说,不论是F一P(法布里一泊罗)腔或是DBR(分布布拉格反射式)腔,激光输出都是在水平方向,统称为水平腔结构.它们都是沿着衬底片的平行方向出光的.而面发射激光器却是在芯片上下表面镀上反射膜构成了垂直方向的F一P腔,光输出沿着垂直于衬底片的方向发出,垂直腔面发射半导体激光器(VCSELS)是一种新型的量子阱激光器,它的激射阔值电流低,输出光的方向性好,藕合效率高,通过阵列化分布能得到相当强的光功率输出,垂直腔面发射激光器已实现了工作温度最高达71℃。另外,垂直腔面发射激光器还具有两个不稳定的互相垂直的偏振横模输出,即x模和y模,对偏振开关和偏振双稳特性的研究也进入到了一个新阶段,人们可以通过改变光反馈、光电反馈、光注入、注入电流等等因素实现对偏振态的控制,在光开关和光逻辑器件领域获得新的进展。20世纪90年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展,且已考虑了在超并行光电子学中的多种应用.980mn,850nm和780nm的器件在光学系统中已经实用化.垂直腔面发射激光器已用于千兆位以太网的高速网络。为了满足21世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要在高速宽带LD、大功率ID,短波长LD,盆子线和量子点激光器、中红外LD等方面.在这些方面取得了一系列重大的成果。
提出了一种用于等离激元激光器的锁相方案,其中,行进的表面波将表面发射激光器阵列中的多个金属微腔纵向耦合。对于单模太赫兹激光器,证明了多瓦的发射,其中从激光阵列辐射的光子比在阵列中吸收的光子多,这些光子是光损耗。
Lehigh的光子学和纳米电子中心的研究人员使用新的锁相技术,实现了太赫兹激光器的创纪录的高输出功率,并报告了任何单波长半导体量子级联激光器的最高辐射效率。
太赫兹激光器可能很快就会出现。太赫兹激光器发出的辐射沿电磁波谱位于微波和红外光之间,由于它们能够穿透常见的包装材料(例如塑料,织物和硬纸板),并被用于识别和检测各种电磁波,因此一直是研究的重点。化学物质和生物分子种类,甚至可以成像某些类型的生物组织而不会造成损害。实现太赫兹激光的潜力在于通过提高功率输出和光束质量来提高其强度和亮度。
现在,桑迪亚的Kumar,Jin和John L. Reno报告了太赫兹技术的另一项突破:他们已经开发出一种用于等离激元激光器的新型锁相技术,并通过使用该技术实现了太赫兹激光器的创纪录的高功率输出。他们的激光器产生了任何单波长半导体量子级联激光器最高的辐射效率。2020年6月12日在Optica上发表的论文“在单光谱模式下具有2 W输出功率的锁相太赫兹等离子体激元激光器阵列”中对这些结果进行了解释。
Kumar说:“据我们所知,太赫兹激光器的辐射效率是迄今为止任何单波长QCL所展示的最高效率,也是关于这种QCL达到50%以上的辐射效率的第一份报告。” 。“如此高的辐射效率超出了我们的期望,这也是为什么我们的激光器的输出功率显着高于以前的功率的原因之一。”
为了提高半导体激光器的光功率输出和光束质量,科学家们经常利用锁相技术,这是一种电磁控制系统,可以迫使一系列光腔在锁定步骤中发出辐射。太赫兹QCL利用带有金属涂层(覆层)的光腔来限制光,是一类被称为等离子体激光激光器的激光器,以其不良的辐射性能而臭名昭著。他们说,现有文献中可用的技术数量有限,可用于大幅提高此类等离激元激光器的辐射效率和输出功率。
Jin说:“我们的论文描述了一种新的等离子激元锁相方案,该方案与以前在半导体激光器的大量文献中对锁相激光器的研究明显不同。” “已证明的方法利用了电磁辐射的传播表面波作为等离激元光学腔相锁相的工具。通过达到太赫兹激光器的创纪录的高输出功率,与以前的工作相比增加了一个数量级,证明了该方法的有效性。”
沿腔的金属层传播但在腔的周围介质中而不是内部而不是内部传播的传播表面波是Kumar研究小组近年来开发的一种独特方法,该方法将继续为进一步开拓新的途径革新。该团队期望他们的激光器的输出功率水平可以导致激光器研究人员和应用科学家之间的合作,以开发太赫兹光谱和基于这些激光器的传感平台。
QCL技术的这项创新是Kuhigh实验室在Lehigh进行长期研究的结果。Kumar和Jin通过大约两年的设计和试验共同开发了最终实现的想法。与桑迪亚国家实验室(Sandia National Laboratories)的里诺(Reno)博士的合作使库玛(Kumar)及其团队能够接收半导体材料,以形成用于这些激光器的量子级联光学介质。
据研究人员称,这项工作的主要创新在于光腔的设计,该腔在某种程度上与半导体材料的性能无关。他们说,Lehigh CPN 公司新获得的感应耦合等离子体(ICP)蚀刻工具在推动这些激光器的性能极限方面发挥了关键作用。
Kumar说,这项研究代表了如何开发窄光束单波长太赫兹激光器,并将在未来发展,这是一个范式转变。他补充说:“我认为太赫兹激光器的未来看起来非常光明。”
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)