硅化钨怎样去除

硅化钨怎样去除,第1张

在超低压/低能环境中有效地完成光刻胶的原位去除,最大程度地保持低k材料的介...都是利用硅化物来降低POLY上的连接电阻。但生成的工艺是不一样的

另外一个严重的问题是刻蚀对材料的损伤,有时这种损伤在SEM下甚至根本就看不见。“对于密度较高的氧化硅、FSG来说,刻蚀只是去除了表面上的材料,不会对内部结构造成损伤。”Mills说。“但是,当你对具有不同化学性质的结构或材料进行刻蚀时,很难找到合适的化学反应使所有层的刻蚀速度都保持一致。对于同时具有有机和无机功能或组成的混合材料来说,最好能够找到合适的刻蚀气体,使刻蚀过程中对Si-键和C-键的攻击速度与它们在ILD材料中的浓度成比例。不幸的是,实际上很难使这两种反应按照相同的速度进行。更严重的问题是在进行下一步湿法清洗或阻障层(barrier)沉积工艺之前,你不知道会造成多么严重的损伤。因此,当发现清洗或barrier沉积问题时,有时其原因要追溯到好几步之前的刻蚀工艺。”

有时,你甚至会发现OSG刻蚀结构非常完美,但是清洗后CD变化50%的情况。对于barrier沉积工艺来说,刻蚀工艺形成的侧壁表面结构可以带来两种截然不同的效果:也许很幸运,也许是一场恶梦。如果其表面结构平整连续,而且没有断痕或倒置的侧壁斜面结构,barrier沉积的工艺窗口就很大。对于氧化硅或FSG双嵌入式结构来说,这是非常正常的情况,因为刻蚀选择比很高。“我们正在研究如何避免侧壁表面结构上所谓“veiling”、“bat wings”和微观沟道等缺陷。barrier沉积和ECD工程师非常害怕这些问题。”Mills说,“低密度结构的侧壁表面具有1nm、2nm和4nm等差异(不均匀性),这也会对barrier工艺造成挑战。”

“没有人能同时解决所有问题。我们必须根据相应材料进行特别的选择和处理。”Tegal公司市场部总监John Almerico说,“我们在铁电材料的刻蚀方面具有丰富的经验,因此

在高k领域我们具有一定的技术优势。钝化层(passivation)刻蚀是我们的另一专长,对这些非关键层电介质我们可以采用非常成熟的技术进行刻蚀,因此具有明显的成本优势。此外,我们非常关注将电介质材料用作硬掩膜层的发展趋势,这是一个很新的领域。”

刻蚀工艺的变化与转折

随着半导体向193nm光刻的发展,电介质刻蚀也面临着新的转折。Lam Research公司电介质刻蚀产品部副总裁Jeff Mark介绍说,这一转折发生在逻辑器件和存储器的90nm开发和130nm大批量生产阶段,并促进了存储器生产向110nm技术的迈进。

前段(FEOL)的挑战主要在于刻蚀纵宽比的增大,特别是DRAM电容器结构。当半导体技术从110nm转移到90nm时,很难刻蚀出那么深(>2.5um)的结构,同时还保持光刻胶的完整性和选择比,并获得预期的刻蚀结构和性能。人们正在寻求各种替代技术例如牺牲掩膜层技术(包括多晶硅或多层抗刻蚀掩膜层)以突破这些限制。后段的主要挑战则在于各种低k材料的应用。半导体正在向碳掺杂氧化硅、OSG等材料发展,其中有些使用了有机低k材料。

193nm光刻胶的工艺窗口和使用条件明显比248nm光刻胶更加苛刻。193nm光刻胶必须很薄。“我们如何才能做到高选择比,刻蚀出又深又小的特征结构,同时保证孔洞或线条边缘表面的平整性呢?”Marks问道。“你必须确保线条或孔洞边缘没有皱纹等缺陷。但是你所使用的光刻胶比以前的更加容易受到损伤,对离子轰击也更加敏感。”

Lam对双频率等离子体进行了优化,从而可以调整离子能量和尽量减小对光刻胶的损伤。“我们还对反应器内的气体反应和 *** 作方法进行了深入研究,改善了光刻胶的选择性。”Marks说。“尽量避免多层光刻胶或多晶硅硬掩膜的使用可以大大节省成本。我们可以利用很薄的193nm光刻胶刻蚀出很深的结构,在有些情况下甚至可以取消多层硬掩膜的使用。”典型的多层光刻胶(MLR)结构由很薄一层193nm光刻胶、OSG或其它电介层以及一层厚光刻胶组成。最上层的193nm光刻胶用于定义图形,然后将图形转移到下面的氧化硅和厚光刻胶层作为最终刻蚀用的掩膜层。

在后段,为了缩短工艺周期和降低成本,原位(in situ)处理的概念正被越来越多的人所接受。“人们希望能够在同一反应器中对多层薄膜进行处理,并且避免记忆效应影响下一层材料的刻蚀。”Marks说。“有些65nm或45nm刻蚀方案非常繁琐,需要在10个不同的反应器中进行10层不同的刻蚀步骤,这不太现实。我们发现限制等离子体的空间分布可以尽量减小记忆效应,双频结构则可以对聚合物进行有效的处理,从而实现某些薄膜层的原位处理。”

刻蚀过程中,会在低k材料表面形成一层保护性阻隔层。“我们需要保留这层阻隔层,但是同时又要尽量降低反应器内的氟含量。”Marks说。“有好几种原位处理方法可供选择:你可以先对晶片进行刻蚀,然后清理反应器中残留的聚合物,最后进行光刻胶的去除。但是,由于晶片仍然在反应器中未取出来,因此清理反应器中残留聚合物的同时也会去除晶片上的保护性阻隔层。另外一种方法是尽可能减少反应器内部的聚合物沉积量。当你用氧等离子体或氢等离子体进行光刻胶去除的同时也就完成了反应器中残留聚合物的清理,使保护性阻隔层可以保持较长时间,尽可能减小对刻蚀材料的损伤程度。”

保持生产过程中的CD控制也开始成为问题。过去,CD控制曾经是栅极刻蚀的一个难题,现在电介质刻蚀也开始出现同样的问题。“我们必须仔细监控后段双嵌入式结构的CD控制和前段栅极的CD控制。许多器件制造商仍然使用电介质刻蚀设备进行栅极硬掩膜层的刻蚀,此时CD控制应该更加严格。只要看一下接触孔的密度有多高,你就知道CD控制应该有多严格,否则一定会出现问题。

到90nm和65nm工艺时,CD变动范围要求必须控制在几个纳米之内。“晶片内部、晶片之间和不同反应器之间的CD重复性必须小于5nm。”Marks说。“保持CD的高度可重现性是非常必要的。为了做到这一点,唯一的办法是我们可以灵活控制工艺条件,实现对晶片范围内CD的实时调整。有时,光刻结果并不是很好,这就要求我们能够在刻蚀工艺过程中对CD变动进行相应的补偿。”

Tokyo Electron Ltd.公司BEOL产品市场部经理Eric Lee说:“刻蚀是最后一步工艺。当光刻结果不符合规格时,下面的刻蚀工艺必须能够提供解决方案,使最终的刻蚀结果能够达到设计的预想结果。要做到这一点必须要有扎实深入的R&D,特别是采用浸入式光刻系统时。”Lee认为高密度等离子体对后段刻蚀相当有害。目前,几乎所有制造商采用的都是中密度等离子体刻蚀设备。他说:“几乎每个人都在尝试采用至少两个以上的电源控制和低电子温度化学反应,降低等离子体造成的损伤

CPU综述

CPU是Central Processing Unit--中央处理器的缩写,它是计算机中最重要的一个部分,由运算器和控制器组成,如果把计算机比作一个人,那么CPU就是他的心脏,其重要作用由此可见一斑。不管什么样的CPU,其内部结构归纳起来可以分为控制单元、逻辑单元和存储单元三大部分,这三个部分相互协调,便可以进行分析,判断、运算并控制计算机各部分协调工作。那么到底CPU是怎么回事,它的过去、现在和将来会是什么样子的呢?下面就让各位随我一起去看看吧!

历史篇

CPU从最初发展至今已经有二十多年的历史了,这期间,按照其处理信息的字长,CPU可以分为:四位微处理器、八位微处理器、十六位微处理器、三十二位微处理器以及六十四位微处理器等等。 1971年,早期的Intel公司推出了世界上第一台微处理器4004,这便是第一个用于计算机的四位微处理器,它包含2300个晶体管,由于性能很差,其市场反应十分不理想。

随后,Intel公司又研制出了8080处理器、8085处理器,加上当时Motorola公司的MC6800微处理器和Zilog公司的Z80微处理器,一起组成了八位微处理器的家族。

十六位微处理器的典型产品是Intel公司的8086微处理器,以及同时生产出的数学协处理器,即8087。这两种芯片使用互相兼容的指令集,但在8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令,由于这些指令应用与8086和8087,因此被人们统称为X86指令集。此后Intel推出的新一代的CPU产品,均兼容原来的X86指令。

1979年Intel推出了8088芯片,它仍是十六位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位,可以使用1MB内存。8088的内部数据总线是16位,外部数据总线是8位。1981年,8088芯片被首次用于IBM PC机当中,如果说8080处理器还不为各位所熟知的话,那么8088则可以说是家喻户晓了,个人电脑――PC机的第一代CPU便是从它开始的。1982年的80286芯片虽然是16位芯片,但是其内部已包含13.4万个晶体管,时钟频率也达到了前所未有的20MHz。其内、外部数据总线均为16位,地址总线为24位,可以使用16MB内存,可使用的工作方式包括实模式和保护模式两种。

三十二位微处理器的代表产品首推Intel公司1985年推出的80386,这是一种全三十二位微处理器芯片,也是X86家族中第一款三十二位芯片,其内部包含27.5万个晶体管,时钟频率为12.5MHz,后逐步提高到33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可以寻址到4GB内存。它除了具有实模式和保护模式以外,还增加了一种虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。1989年Intel公司又推出准三十二位处理器芯片80386SX。它的内部数据总线为三十二位,与80386相同,外部数据总线为十六位。也就是说,80386SX的内部处理速度与80386接近,也支持真正的多任务 *** 作,而它又可以接受为80286开发输入/输出接口芯片。80386SX的性能优于80286,而价格只是80386的三分之一。386处理器没有内置协处理器,因此不能执行浮点运算指令,如果您需要进行浮点运算时,必须额外购买昂贵的80387协处理器芯片。

八十年代末九十年代初,80486处理器面市,它集成了120万个晶体管,时钟频率由25MHz逐步提升到50MHz。80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并在X86系列中首次使用了RISC(精简指令集)技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线方式,大大提高了与内存的数据交换速度,由于这些改进,80486的性能比带有80387协处理器的80386提高了4倍。早期的486分为有协处理器的486DX和无协处理器的486SX两种,其价格也相差许多。随着芯片技术的不断发展,CPU的频率越来越快,而PC机外部设备受工艺限制,能够承受的工作频率有限,这就阻碍了CPU主频的进一步提高,在这种情况下,出现了CPU倍频技术,该技术使CPU内部工作频率为处理器外频的2-3倍,486DX2、486DX4的名字便是由此而来。

九十年代中期,全面超越486的新一代586处理器问世,为了摆脱486时代处理器名称混乱的困扰,最大的CPU制造商Intel公司把自己的新一代产品命名为Pentium(奔腾)以区别AMD和Cyrix的产品。AMD和Cyrix也分别推出了K5和6x86处理器来对付Intel,但是由于奔腾处理器的性能最佳,Intel逐渐占据了大部分市场。

此后CPU的发展情况不用我说想必大家都已经很了解了,97年初Pentium MMX上市,年中Pentium II和AMD K6上市,年末Cyrix 6x86MX面市,98年更是“三足”鼎立,PII、赛扬、K6-2、MII杀得你死我活。自从推出Pentium II后,Intel便放弃了逐渐老化的Socket 7市场转而力推先进的Slot 1架构,但是这一次Intel却打错了主意,随着全球低于1000美元低价PC需求量的增长,AMD的K6-2处理器填补了Intel在这个低端领域的空白,AGP总线技术、100MHz外频,这些原先只有在Slot 1上才能实现的技术在AMD首先倡导的Super 7时代也实现了,虽然K6-2和Super 7的性能比起同主频的PII来说还有差距,但是低廉的价格还是让AMD抢得了将近30%的CPU零售市场份额。AMD更是以一副不畏强者的姿态,博得了众多消费者的好感。

可惜到了99年,面对Intel猛烈反扑,AMD开始走下坡路,市场销量很糟。Cyrix更是在这场处理器大战中一败涂地,本想依*NS(美国国家半导体公司)东山再起,无奈时机已晚,最终在六月份被芯片组厂商VIA(威盛)收购。

随后的IDT和Rise两家新杀入处理器市场的公司在技术的创新上以及市场定位上均有自己的独到之处,IDT的Winchip C6、Winchip C6-2主要面向低端家用市场,Rise的处理器则主要进军移动电脑领域。无奈生不逢时,在Intel产品的挤压下,它们的日子也是举步为坚,99年年中,也正是Cyrix被收购一个月以后,威盛又收购了IDT公司,同时,Rise也被另一家芯片组厂商SIS(矽统科技)收购,随后传出Rise退出PC处理器市场,主攻家电处理芯片市场的消息,这样,经过重新调整之后,PC处理器市场呈现新三足鼎立的局面:Intel凭借自己优秀的产品以及良好的市场运作继续占领大部分市场份额;AMD则通过8月份发布的Athlon—K7打了个漂亮的翻身仗,K7成为历史上首次性能全面超越Intel同类产品的最快处理器,其市场占有率有进一步扩大的趋势;威盛在收购Cyrix和IDT之后,集成两家公司的最新技术,计划在2000年初推出Socket370兼容的Joshua—约书亚处理器,主攻低端市场。

参考资料:学校 学的啊~

高频机及感应加热技术是目前对金属材料加热效率最高、速度最快,且低耗环保的先进技术。用电量可节省百分之三十,甚至四十左右,是各国大力提倡推广和应用的减排、降耗手段之一。 通常人们对物体的加热,一是利用煤、油、气等能源的燃烧产生热量;二是利用电炉等用电器将电能转换成热量。这些热量只有通过热传递的方式(热传导、热对流、热辐射),才能传递到需要加热的物体上,也才能达到加热物体的目的。由于这些加热方式,被加热的物体是通过吸收外部热量实现升温的。因此,它们都属于间接加热方式。 热量的自然传递规律是:热量只能从高温区向低温区,高温体向低温体,高温部分向低温部分自然的传递。因此,只有当外部的热量、温度明显多于、高于被加热物体时,才能将其有效地加热。 这就需要用很多的能量来建立一个比被加热物体所需要的热量多的多、温度高的多的高温区。如炉,烘箱等。这样,不但这些热量中只有少部分能够传递到被加热体上,造成很大的能源浪费。 而且加热时间长,在燃烧、加热的过程中,还会产生大量的有害性物质和气体。它们既会对被加热体造成腐蚀性的损害,又会对大气造成污染。即便是使用电炉等电能加热方式,虽然无污染,但仍然存在着效率低、成本高、加热速度慢等缺点。 感应式加热技术,是利用电磁感应原理、涡流原理等,直接将电能在所需加热的金属物体中转化成热量。因此它具有损耗少、耗能少,用电省、加热速度快,无污染、无噪声、安全可靠等诸多优点。并且,加热设备无需预热、被加热体不易氧化、便于气体保护,可自动控制、具备多项智能保护功能、安全可靠、易于 *** 作。 感应式加热方式的另一个特点是,它属于非接触式加热,适应性强,对被加热体一般不会产生其它影响。 高频机可以对任何金属和非金属中的石墨进行高速地直接加热,对非金属材料可以进行间接式加热。它广泛用于各行各业对金属材料的热加工、热处理、热装配及焊接、熔炼等工艺中。它不但可以对工件整体加热,还能对工件局部的针对性加热;可实现工件的深层透热,也可只对其表面、表层集中加热等。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8604107.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-18
下一篇 2023-04-18

发表评论

登录后才能评论

评论列表(0条)

保存