MOS管的引脚,G、S、D分别代表什么?

MOS管的引脚,G、S、D分别代表什么?,第1张

G:gate 栅极;S:source 源极;D:drain 漏极。N沟道的电源一般接在D,输出S,P沟道的电源一般接在S,输出D。

增强耗尽接法基本一样。

无论N型或者P型MOS管,其工作原理本质是一样的。

扩展资料

mos管是金属(metal)—氧化物(oxide)—半导体(semiconductor)场效应晶体管,或者称是金属—绝缘体(insulator)—半导体。MOS管的source和drain是可以对调的,他们都是在P型backgate中形成的N型区。

场效应管(FET),把输入电压变化转化为输出电流的变化。FET的增益等于它的transconductance, 定义为输出电流的变化和输入电压变化之比。

参考资料MOS管_百度百科

三极管的工作原理

三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

一、电流放大

下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源 能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变 化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射 极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。三极管是电流控制型器件。

真正要弄明白三极管的工作原理要学量子力学,固体物理学,半导体物理学,晶体管原理4门课

mos管是金属(metal)—氧化物(oxid)—半导体(semiconductor)场效应晶体管。

或者称是金属—绝缘体(insulator)—半导体。

MOS管的源(source)和漏(drain)是可以对调的,他们都是在P型backgate中形成的N型区。在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。这样的器件被认为是对称的。

当MOS电容的栅极(Gate)相对于衬底(BACKGATE)正偏置时发生的情况。穿过GATE DIELECTRIC的电场加强了,有更多的电子从衬底被拉了上来。同时,空穴被排斥出表面。随着GATE电压的升高,会出现表面的电子比空穴多的情况。由于过剩的电子,硅表层看上去就像N型硅。掺杂极性的反转被称为inversion,反转的硅层叫做沟道(channel)。随着GATE电压的持续不断升高,越来越多的电子在表面积累,channel变成了强反转。Channel形成时的电压被称为阈值电压Vt。当GATE和BACKGATE之间的电压差小于阈值电压时,不会形成channel。所以MOS是电压控制型器件。

mos管是金属(metal)-氧化物(oxide)-半导体(semiconductor)场效应晶体管,或者称是金属-绝缘体(insulator)-半导体。MOS管的source和drain是可以对调的,他们都是在P型backgate中形成的N型区。在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。这样的器件被认为是对称的。mos管以常见的n管为例,只要没有打开,在mos管DS之间加正向电压是不通的,加反向电压由于体二极管的存在,反向电压只要大于这个体二极管的死区电压是可以导通的,不管mos管有没有去打开它,导通压降大体都在零点几伏,不同应用条件,这个数值有点来去。

这里有些人可能不清楚的地方是:mos管打开,且DS之间加了反偏电压后,mos处于什么工作状态?就是处于导通,而且基本和打开之后的正偏一样的导通。由于这个特性,比如mos管需要体二极管来进行反偏续流的时候,可以通过一些手段同时把mos管打开,这样做会使导通压降会小很多,达到减少mos管发热量的目的。双极型晶体管把输入端电流的微小变化放大后,在输出端输出一个大的电流变化。双极型晶体管的增益就定义为输出输入电流之比(beta)。另一种晶体管,叫做场效应管(FET),把输入电压的变化转化为输出电流的变化。FET的增益等于它的transconductance, 定义为输出电流的变化和输入电压变化之比。市面上常有的一般为N沟道和P沟道,详情参考右侧图片(N沟道耗尽型MOS管)。而P沟道常见的为低压mos管。场效应管通过投影一个电场在一个绝缘层上来影响流过晶体管的电流。事实上没有电流流过这个绝缘体,所以FET管的GATE电流非常小。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8607422.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-18
下一篇 2023-04-18

发表评论

登录后才能评论

评论列表(0条)

保存