国际化RFID常用
协议标准
射频标签的通信标准是标签芯片设计的依据,目前国际上与RFID相关的通信标准主要有:ISO/IEC 18000标准(包括7个部分,涉及125KHz, 13.56MHz, 433MHz, 860-960MHz, 2.45GHz等频段),ISO11785(低频),ISO/IEC 14443标准(13.56MHz),ISO/IEC 15693标准(13.56MHz),EPC标准(包括Class0, Class1和GEN2等三种协议,涉及HF和UHF两种频段),DSRC标准(欧洲ETC标准,含5.8GHz)。a) ISO/IEC 14443 近耦合IC卡,最大的读取距离为10cm. ISO/IEC14443协议的读写器读取距离较近,基本为近距离。其中,ISO/IEC 14443A主要应用在生产自动化、门禁考勤、安防、一卡通和产品防伪等领域;ISO/IEC 14443B主要应用是我国的二代身份z; b) ISO/IEC 15693 疏耦合IC卡,最大的读取距离为1m. ISO/IEC 15693协议读写器读取距离较远,可远距离通信。它的应用范围较广,生产自动化、医疗管理、珠宝盘点、资产管理、停车场管理和产品防伪、门禁考勤、会议签到、无障碍通道、资产管理、物流及供应链、图书管理、医药管理和门禁门票等领域。现在按频率对一些常用标准做一些简单介绍(并附带介绍一下接触式IC卡的协议标准):1、ISO 7816:对接触式IC卡进行了一些规范。2、125KHz~135KHz:ISO18000-2,对低频识别RFID进行了一些规范。举例:EM4100:只读低频芯片。EM4469/4569:11个块,44个字节,512bit存储空间。ATA5567:7个块,28个字节,330bit存储空间。ATA5567是e5550、e5551、e5554、T5557的升级产品。e5550、e5551、e5554、T5557是德国TEMIC公司生产的芯片,1998年美国爱特梅尔公司(简称为ATMTL)收购德国TEMIC公司,ATA5567就是ATMEL新生产的一款芯片。3、134.2KHz:ISO 11784和ISO 11785,对动物识别RFID进行了一些规范。举例:EM4005、EM4105:应用于动物识别的低频标签外观有项圈式、耳牌式、注射式、药丸式等。典型应用的动物有牛、信鸽等。HITAGTM 2:国内常称HITAG 2,荷兰恩智浦公司生产。HITAGTM S 256:国内常称为HITAG S 256。HITAGTM S 2048:国内常称HITAG S 2048。[备注1:荷兰恩智浦(NXP)
半导体公司的前身为飞利浦(PHILIPS)半导体公司。][备注2:HITAGTM 1,国内常称HITAG 1,符合HITAG 1协议,但不符合ISO 11784/11785协议。]4、13.56 MHz:ISO 14443 Type A&B、ISO 15693、ISO 18000-3 Mode 1&2、ISO 18092 NFC、EPC HF CLASS 1、EPC HF Version 2①ISO 14443 typeA和typeB协议标准的简单比较。国际标准ISO14443定义了两种信号接口:typeA和typeB。ISO14443A和B是不兼容的。A、ISO 14443 Type A(也称为ISO 14443A)一般用于门禁卡、公交卡和小额储值消费卡等,具有较高的市场占有率。举例:MIFARE ULtralight(MF0 ICU1X) :国内常称U10。典型应用:广深高速火车票。MIFARE Std 1k(MF1 IC S50) :国内常称MF1 S50。SLE66R35 Mifare NRG:德国英飞凌(infineon)生产,兼容MIFARE Std 1k(MF1 IC S50)。[备注1:英飞凌科技公司(Infineon Technologies)总部位于德国慕尼黑,是德国最大的半导体产品制造商。其前身是西门子集团的半导体部门,于1999年独立,2000年上市。其中文名称为亿恒科技,2002年后更名为英飞凌科技。]MIFARE Std 4k(MF1 IC S70) :国内常称为MF1 S70。Mifare DESFire 4k(MF3 IC D41) :国内常称为MF3。典型应用:南京地铁。SHC1102:上海华虹生产。典型应用:上海一卡通。B、ISO14443B由于加密系数比较高,更适合于CPU卡,一般用于身份z、护照、英联K等,目前的第二代电子身份z采用的标准是ISO 14443 TYPE B协议。举例:SR176:瑞士意法半导体(ST)生产。SRIX4K:瑞士意法半导体(ST)生产。THR1064:北京同方生产。典型应用:奥运门票。AT88RF020:美国爱特梅尔(ATMEL)生产。典型应用:广州地铁卡。
第二代居民身份z:上海华虹、北京同方THR9904、天津大唐和北京华大生产。②ISO 15693协议ISO 14443A/B的读写距离通常在10cm以内,应用较广。但ISO15693的读写距离可以达到1m,应用较灵活,与ISO 18000-3兼容(我国的国家标准很多与ISO 18000大部分兼容)。举例:ICODE SLI(SL2 ICS20):国内常称ICODE 2。[备注:ICODE 1(SL2 ICS30),国内常称ICODE 1,符合ICDOE1协议,但不符合ISO 15693协议。]Tag-it HF-1 Plus:国内常称TI 2048,美国德州仪器公司(简称TI公司)生产。EM4135:瑞士EM生产。BL75R04:上海贝岭生产,兼容TI公司的Tag-it HF-1 Plus。③ISO 18092 NFC:对近距离无线通信技术进行了一些规范。5、433.92MHz:ISO 18000-7配备相应的读写器,阅读距离较远。6、860~960MHz:ISO 18000-6 Type A&B&C、EPC UHF Class 0&1、EPC Class 1 Generation 2配备相应的读写器,阅读距离一般大于1m,典型情况为4~6m,最大可达10m以上。以目前技术水平来说,无源微波射频标签比较成功产品相对集中在902~928MHz工作频段上。举例:UCODE HSL(SL3 ICS30):国内常称HSL,符合ISO 18000-6 Type B协议。UCODE EPC G2(SL3 ICS10):国内常称GEN2,符合ISO 18000-6 Type C协议。RI-UHF-OOC02-03:美国德州仪器公司(简称TI公司)生产,符合ISO 18000-6 Type C协议。7、2.45GHz:ISO 18000-4 Mode 1&2典型的微波射频标签的识读距离为3~5m,个别有达10m或10m以上的产品。
1、首先看设计,华为海思和紫光展锐分列国内前两名。目前,两家公司在不少领域已是世界领先水平,但一个巨大的问题是,其架构授权的核心都被外人掌握。
目前,国内仅有中科院的龙芯和总参谋部的申威拥有自主架构,前者用于北斗导航,后者用于神威超级计算机,民用领域基本是空白。
2、设备和材料是又一大短板。制造芯片的三大设备光刻机、蚀刻机和薄膜沉积,国内仅中微半导体的介质蚀刻机能跟上行业节奏,其7纳米设备已入围台积电名单。
半导体行业前景
在全球芯片短缺下,中国加快布局芯片行业,我国半导体制造商也正纷纷抢购二手芯片制造设备。而在此背景下,日本二级市场半导体价格大涨,有望成为一大赢家。
据日经中文网3月1日报道,多家从事于二手市场的商家透露,在近一年时间里,日本二手半导体设备价格平均上涨了20%;而光刻设备等核心设备价格更是涨至3倍以上。日本金融机构三井住友则表示,与2008年的雷曼危机之后相比,半导体设备行情涨至10倍以上。
三菱UFJ负责租赁的人士指出,受到美国影响,中国正在大量采购上一代半导体设备,而在该国售出的二手设备中,近90%流向了中国市场。
可以说,半导体产业的飞速发展在为半导体新设备带来市场的同时,也为二手半导体设备提供了“舞台”。因为二手产品更具备价格优势,追求更低生产成本的中企在该领域正日渐活跃。
除了从日本供应商处购买,此前我国也顺利从韩国购买到了半导体重要设备——光刻机。据观察者网报道,晶瑞股份斥资1102.5万美元(约合人民币7126万元),从韩国代理商SK Hynix处购买的二手ASML浸没式光刻机(XT 1900Gi)已顺利到货。
据报道,晶瑞股份预计在今年上半年完成设备的安装调试,用于研发最高分辨率达28nm的高端光刻胶;并计划在3年内完成ArF光刻胶产品相关技术参数及产品定型,实现规模化生产。
总的来说,二手市场正成为中企从海外供应商处找到转机的良方,受此助力,我国芯片行业的研发进展也有望踏上新的台阶。
背景
我们生活中遇到的大多数电子器件,通常都是由无机材料例如硅制成,属于无机半导体器件。可是,由于僵硬、易碎、成本高、工艺复杂、生物相容性差等诸多弊端,传统硅基半导体面临着严峻的挑战。此外,硅基半导体的制造工艺也正在逼近物理极限。
因此,世界各国的科学家们正在研制各种新型电子器件来克服这些弊端,进一步提升电子器件的性能,拓展其应用场景。近年来,一种新型电子器件备受科学家们的追捧,它就是由有机半导体材料制成的有机电子器件。有机电子器件不仅具备良好的柔韧性与透明性,而且超薄、超轻、对环境友好。这些材料可通过简单、环保、低成本的工艺进行加工,例如制作成溶液后大面积打印。
这些更加柔韧、轻薄、便携、透明的有机电子产品,可以应用于诸多领域,例如柔性太阳能电池、柔性显示器、柔性传感器、柔性可穿戴设备、植入式设备等。其中,有机发光二极管(OLED)便是一个成功商用的典型案例,最新一代的智能手机已经开始采用OLED显示屏。
创新
今天,笔者要为大家介绍有机电子领域的一项新进展。
近日,日本东京工业大学材料科学与工程系 Tsuyoshi Michinobu 和 Yang Wang 领导的研究团队,报告了一种具有世界领先的电子迁移率性能的单极n型晶体管。他们采用了一种新方法来提升之前被证明很难优化的半导体聚合物电子迁移率。他们的高性能材料实现了达 7.16 cm2 V−1 s−1的电子迁移率,相比于之前可比的成果提升了40%以上。
《Journal of the American Chemical Society》期刊上发表的论文表明,他们专注于提升所谓的“n型半导体聚合物”材料的性能。n型材料以带负电的电子导电为主;相对而言,p型材料以带正电的空穴导电为主。Michinobu 解释道:“因为与带正电的原子团相比,带负电的原子团天生就是不稳定的,所以制造稳定的n型半导体一直是有机电子领域的一个重要挑战。”
技术
然而,这项研究既应对了基本挑战,也满足了实用的需求。Wang 表示,例如,许多有机太阳能电池,就是由p型半导体聚合物和n型富勒烯衍生物制成的。缺点就是,后者成本高,难以合成,不兼容柔性器件。他说:“为了克服这些缺点,高性能的n型半导体聚合物非常有希望能够推进全聚合物太阳能电池方面的研究。”
团队的方法包括采用一系列新型聚合(benzothiadiazole-naphthalenediimide)衍生物,以及微调材料的骨干构象。这种方法可以通过引入“1,2-亚乙烯基桥(vinylene bridges)”来实现。之前的研究表明,这种结构被认为是一种有效的间隔物,而这种间隔物却从来没有在这项研究所关注的聚合物中使用过。它能与相邻的氟原子和氧原子形成氢键。引入这些“1,2-亚乙烯基桥”需要可以优化反应条件的重要技术。
总体来说,生成的材料具有更好的分子包装次序以及更高的强度,这有利于提升电子迁移率。
采用掠入射广角X射线散射(GIWAXS)等技术,研究人员确认他们实现了极短的“π−π堆叠距离(stacking distanc)”,仅为3.40埃米(一埃米为十分之一纳米)。这个距离衡量了在电荷中电荷需要被携带至多远。Michinobu 表示:“对于高迁移率有机半导体聚合物来说,这个距离属于最短的。”
价值
这项成果预示着有机电子将迎来令人振奋的未来,科学家们将开发出创新型的柔性显示器和可穿戴技术。
未来
除此之外,研究人员还面临几项挑战。他说:“我们需要进一步优化骨干结构。同时,侧链基也在决定半导体聚合物的结晶性和包装方向上扮演着重要角色。我们还有改善的空间。”
Wang 指出,对于报告的聚合物来说,最低未占有分子轨道(LUMO)能级在−3.8 eV 到 −3.9 eV之间。他说:“LUMO能级越深,电子输运就越快越稳定。因此,例如,引入sp2-N、氟原子和氯原子的进一步设计,将有助于实现更深的LUMO能级。”
未来,研究人员们也将打算改善n沟道晶体管的空气稳定性。对于实际应用例如类似互补金属氧化物半导体(CMOS)的逻辑电路、全聚合物太阳能电池、有机光电探测器和有机热电器件来说,空气稳定性是一个非常关键的问题。
参考资料
【1】https://www.titech.ac.jp/english/news/2019/043699.html
【2】http://dx.doi.org/10.1021/jacs.8b12499
评论列表(0条)