室温下,Si的带隙为1.1eV,GaAs的带隙为1.43eV,一般把室温下带隙大于2.0eV的半导体材料归类于宽带隙半导体,宽带隙半导体在蓝、紫光和紫外光电子器件,高频、高温、高功率电子器件及场发射器件方面应用广泛。
第四代半导体材料:以氧化镓(Ga2O3)为代表
作为新型的宽禁带半导体材料,氧化镓(Ga2O3)由于自身的优异性能,凭借其比第三代半导体材料SiC和GaN更宽的禁带,在紫外探测、高频功率器件等领域吸引了越来越多的关注和研究。
氧化镓是一种宽禁带半导体,禁带宽度Eg=4.9eV,其导电性能和发光特性良好,因此,其在光电子器件方面有广阔的应用前景,被用作于Ga基半导体材料的绝缘层,以及紫外线滤光片。
第四代半导体的发展背景
随着量子信息、人工智能等高新技术的发展,半导体新体系及其微电子等多功能器件技术也在更新迭代。虽然前三代半导体技术持续发展,但也已经逐渐呈现出无法满足新需求的问题,特别是难以同时满足高性能、低成本的要求。
此背景下,人们将目光开始转向拥有小体积、低功耗等优势的第四代半导体。第四代半导体具有优异的物理化学特性、良好的导电性以及发光性能,在功率半导体器件、紫外探测器、气体传感器以及光电子器件领域具有广阔的应用前景。
目前具有发展潜力成为第四代半导体技术的主要材料体系主要包括:窄带隙的锑化镓、铟化砷化合物半导体;超宽带隙的氧化物材料;其他各类低维材料如碳基纳米材料、二维原子晶体材料等。
在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。空穴导电并不是实际运动,而是一种等效。
电子导电时等电量的空穴会沿其反方向运动 。它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。
复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子- 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子- 空穴对,载流子密度增加,电阻率减小。
扩展资料:
半导体的应用
1、在无线电收音机(Radio)及电视机(Television)中,作为“讯号放大器/整流器”用。
2、发展「太阳能(Solar Power)」,也用在「光电池(Solar Cell)」中。
3、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。
4、半导体致冷器的发展, 它也叫热电致冷器或温差致冷器, 它采用了帕尔贴效应。
参考资料来源:百度百科-半导体
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)