研究人员在康奈尔和康奈尔两维物质之间发现了一个奇异的绝缘体。
通过这样做,他们实现了一个难以捉摸的模型,这个模型是十多年前首次提出的,但科学家们一直未能证明,因为似乎不存在合适的材料。现在研究人员已经建立了正确的平台,他们的突破可能会导致量子器件的进步。
该小组的论文“来自相互缠绕的莫尔带的量子反常霍尔效应”,发表于12月22日 自然 共同的主要作者是前博士后研究员李婷欣和姜胜伟,博士生沈博文和麻省理工学院研究员杨张。
该项目是文理学院物理系副教授麦金辉和工程学院应用与工程物理教授单杰(音译)共享实验室的最新发现。两位研究人员都是康奈尔大学卡夫利纳米科学研究所的成员;他们是通过教务长的纳米科学和微系统工程(NEXT Nano)计划来到康奈尔大学的。
他们的实验室专门研究二维量子材料的电子特性,通常是通过堆叠超薄的半导体单分子膜,使它们稍微不匹配的重叠产生莫尔晶格图案。在那里,电子可以沉积并相互作用,从而表现出一系列的量子行为。
在这个新项目中,研究人员将二碲化钼(MoTe)配对2)含二硒化钨(WSe2),将它们以180度的角度扭转,这就是所谓的AB堆栈。
在施加电压后,他们观察到了一种称为量子反常霍尔效应的现象。这源于一种称为霍尔效应(Hall effect)的现象,这种现象最早在19世纪末被观察到,在这种现象中,电流流过一个样品,然后被以垂直角度施加的磁场弯曲。
1980年发现的量子霍尔效应是一种超大型的量子霍尔效应,在这种效应中,施加了一个更大的磁场,从而引发了更奇怪的现象:大块样品的内部变成了绝缘体,而电流则沿着外边缘单向移动,电阻量子化为宇宙中基本常数定义的值,而不考虑材料的细节。
量子反常霍尔绝缘体于2013年首次被发现,达到了同样的效果,但没有任何磁场的干预,电子沿着边缘加速,就像在高速公路上一样,没有耗散能量,有点像超导体。
马克说:“很长一段时间以来,人们认为量子霍尔效应需要磁场,但实际上并不需要磁场。”。“那么,磁场的作用是什么来代替的呢?事实证明是的磁性你必须使材料具有磁性。"
微粒2/WSe公司2stack现在加入了为数不多的几种已知的量子反常霍尔绝缘体的行列。但这仅仅是其吸引力的一半。
研究人员发现,只要调整电压,他们就可以半导体堆积成二维拓扑绝缘体,这是量子反常霍尔绝缘体的近亲,只是它存在重复。在一个“副本”中,电子高速公路沿边缘顺时针方向流动,而在另一个“副本”中,则是逆时针方向流动。
物质的这两种状态以前从未在同一体系中得到证明。
在与麻省理工学院合作者梁福(音译)领导的合作者进行磋商后,康奈尔大学的研究小组得知,他们的实验实现了2005年宾夕法尼亚大学物理教授查尔斯·凯恩(Charles Kane)和尤金·梅勒(Eugene Mele)首次提出的石墨烯玩具模型。Kane-Mele模型是第一个二维拓扑绝缘体的理论模型。
“这对我们来说是个惊喜,”麦说。“我们刚刚制造了这种材料并进行了测量。我们看到了量子反常霍尔效应和二维拓扑绝缘体,然后说‘哦,哇,太棒了。’然后我们和麻省理工学院的理论朋友梁福谈了谈。他们进行了计算,发现这种材料实际上实现了一种长期以来人们所追求的凝聚态物质模型。我们从未进行过实验我是说这个。"
像石墨烯云纹材料2/WSe公司2他们在一系列量子态之间进行转换,包括从金属到Mott绝缘体的转变,这是研究小组报告的一个发现 自然 九月。
现在,马克和山的实验室正在研究这种材料的全部潜力,方法是将它与超导体耦合,并用它来建造量子反常霍尔干涉仪,而这两种方法又可以产生量子反常霍尔干涉仪量子比特,量子计算的基本元素。马克也希望他们能找到一种方法来显著提高量子反常霍尔效应发生时的温度,这个温度大约为2开尔文,从而产生高温无耗散导体。
合著者包括博士生李立中、醉涛;以及麻省理工学院和日本筑波国立材料科学研究所的研究人员。
基于量子半导体材料的器件有:分子震荡器,量子陀螺仪,量子激光器,量子放大仪,量子磁强计还有量子晶体管等。根据查询相关公开信息显示:量子半导体是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。
LED灯和显示器,以及高质量的太阳能电池板诞生于半导体的一场革命,它能有效地将能量转换为光,反之亦然。现在,下一代半导体材料即将问世。在一项新的研究中,研究人员发现,在他们改造照明技术和光电技术的潜力背后,隐藏着古怪的物理现象。将这些新兴所谓“混合半导体”的量子特性与其已有的进行比较,就像是将莫斯科芭蕾舞团比作千斤短跳。由乔治亚理工学院的研究人员领导的一个物理化学家团队称,由量子粒子组成的旋转团在这些新兴材料中波动,可以轻松地创造出非常理想的光电特性,这些相同的性质在现有半导体中是不现实的。
博科园-科学科普:在这些新材料中移动的粒子也参与了材料本身的量子运动,类似于舞蹈者吸引地板与他们一起跳舞。研究人员能够测量舞蹈引起的材料的模式,并将其与新兴材料的量子特性和引入材料的能量联系起来。这些见解可以帮助工程师有效地研究新型半导体。这种新兴材料能够容纳类似于舞者各种古怪的量子粒子运动,这与它在分子水平上的不寻常的灵活性直接相关,就像加入舞蹈的舞池一样。相比之下,现有半导体具有刚性的、直线排列的分子结构,这使得跳舞变成了量子粒子。研究人员检测的混合半导体被称为卤化物有机-无机钙钛矿(HOIP),这将在底部与“混合”半导体名称一起详细解释。
“混合”半导体是将半导体中常见晶体晶格与一层具有创新d性的材料结合在一起。提升机不仅具有独特的光亮度和节能性能,而且易于生产和应用。乔治亚理工大学化学与生物化学学院的教授卡洛斯·席尔瓦说:一个令人信服的优势是,提升机是在低温下制造,并在溶液中进行处理。生产它们所需的能源要少得多,而且可以大批量生产。席尔瓦与乔治亚理工学院和意大利理工学院的Ajay Ram Srimath Kandada共同领导了这项研究。大多数半导体的小批量生产都需要很高温度,而且它们的表面很硬,但可以在起重机上涂上油漆来生产led、激光器,甚至是窗户玻璃,这些玻璃可以发出从海蓝宝石到紫红色的任何颜色的光。
吊装照明可能只需要很少的能源,而太阳能电池板制造商可以提高光电效率,降低生产成本。由佐治亚理工学院领导的研究小组包括来自比利时蒙斯大学和意大利理工学院研究人员。研究结果于2019年1月14日发表在《自然材料》上。这项研究由美国国家科学基金会、欧盟地平线2020、加拿大自然科学和工程研究理事会、丰德魁北克的pour la Recherche和比利时联邦科学政策办公室资助。光电器件中的半导体可以把光转换成电,也可以把电转换成光。研究人员专注于与后者相关的过程:光发射。让一种材料发光的诀窍,从广义上说,就是把能量应用到材料中的电子上,这样它们就能从围绕原子的轨道上获得量子跃迁,然后当它们跳回到空出的轨道上时,就能以光的形式释放出这种能量。
已建立的半导体可以在严格限制电子运动范围的材料区域捕获电子,然后将能量应用到这些区域,使电子一致地进行量子跃迁,在它们一致地跳下来时发出有用的光。这些是量子阱,材料的二维部分限制了这些量子特性,从而产生了这些特殊的光发射特性。有一种可能更具吸引力的发光方式,这也是新型混合半导体的核心优势。一个电子带负电荷,它被能量激发后空出的轨道叫做电子空穴。电子和空穴可以相互旋转形成一种假想粒子,或准粒子,称为激子。激子的正负吸引被称为结合能,这是一种非常高能的现象,这使得激子非常适合发光。当电子和空穴重新结合时,空穴释放出结合能来发光。但通常,激子很难在半导体中保持。
传统半导体中的激子特性只有在极冷温度下才稳定,但在提升过程中,激子性质在室温下非常稳定。激子从原子中释放出来并在物质中移动。此外,HOIP中的激子可以围绕其他激子旋转,形成准粒子,即双激子。还有更多。激子也会围绕材料晶格中的原子旋转。就像电子和电子空穴产生激子一样,激子绕原子核旋转会产生另一种准粒子,叫做极化子。所有这些作用都会导致激子向极化子转变。我们甚至可以说一些激子呈现出一种“极化子”的细微差别。使所有这些动力学更加复杂的是,提升装置充满了正离子和负离子。这些量子舞蹈的华丽对材料本身有着至关重要的影响。
不同寻常的是,材料中的原子与电子、激子、双激子和极化子共舞,在材料中产生了重复的纳米级凹痕,这些凹痕可以作为波型观察到,随着能量的增加,这些凹痕会发生位移和通量。在基态下,这些波型会以某种方式呈现,但随着能量的增加,激子的表现会有所不同。这改变了波浪模式,这就是我们所测量的。这项研究的关键观察结果是,波型随激子类型(激子、双激子、极化子/非极化子)的不同而变化。这些凹痕也会抓住激子,减缓它们在材料中的移动速度,所有这些华丽的动力学可能会影响光发射的质量。
该材料为卤化物有机-无机钙钛矿,是由两个无机晶格层构成的夹层,中间夹有一些有机材料,形成有机-无机杂化材料,量子作用发生在晶格中。中间的有机层就像一层橡皮筋,使水晶格子变成一个摇摆但稳定的舞池。此外,提升机与许多非共价键连接在一起,使材料柔软。晶体的单个单位以一种叫做钙钛矿形式存在,它是一种非常均匀的钻石形状,中间是一种金属,而像氯或碘这样的卤素在点上,因此被称为“卤化物”,在这项研究中,研究人员使用了含有公式(PEA)2PbI4的二维模型。
博科园-科学科普|研究/来自:乔治亚理工学院
Ben Brumfield, Georgia Institute of Technology
参考期刊文献:《Nature Materials》
论文DOI: 10.1038/s41563-018-0262-7
博科园-传递宇宙科学之美
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)