测试探针生产厂家

测试探针生产厂家,第1张

测试探针生产厂家比较好的是深圳市华荣华电子科技有限公司。

华荣华是一家专业制造探针为主,治具服务为辅,为各行业提供测试探针和治具配件服务。

经多年发展已经稳步成为国内测试探针集研发、生产、销售于一体的专业公司。

华荣华测试探针被广泛应用在ICT、PCB、FPC等设备及汽车、手机、太阳能、无人机、治具夹具、机械测试、智能家居、智能手表、5G信号等通信行业测试。

探针的种类包括:半导体高频测试针、电流针、充电顶针、大电流针、开关针、PCB测试针、BGA高频双头针、ICT测试针、d簧测试针、5G高频探针及精密五金件和各种标准与非标的消费五金件。

背景

目前,以硅为代表的传统半导体材料正在面临严峻挑战。通过原理创新、结构改善、工艺进步,科研人员很难再大幅度提升硅基半导体器件的总体性能。“后摩尔时代”已经悄然到来。作为有望取代硅基半导体材料的新一代半导材料,近年来二维半导体的研究进展迅猛。

石墨烯凭借机械强度高、导电导热性好、轻薄、柔性、透明等优势,一度被誉为“新材料之王”,也让二维材料成为了备受瞩目的热点。遗憾的是,石墨烯中独特的碳原子排列,虽然有利于电子轻松地高速流动,但也使之不适合作为半导体。石墨烯没有带隙,无法选择”打开“或者”关闭“电流,而这种二进制开关机制正是现代电子器件的基础。

不过除了石墨烯之外,越来越多的二维材料被人类发现并研究,其中也不乏可以作为半导体的二维材料,例如过渡金属硫族化合物、黑磷等。科学家们已经通过这些二维材料创造出诸多半导体器件,例如:

然而,在二硫化钼(MoS2)为代表的二维半导体器件的制造工艺中,采用电子束光刻技术,将金属电极纳米刻画到这种原子级二维材料的层上,目前会产生一些问题,导致“非欧姆接触”与“肖特基势垒”。

创新

近日,美国纽约大学工学院化学与生物分子工程系教授 Elisa Riedo 领导的团队,报告了原子级薄度处理器制造工艺中的一项重要突破。这一发现不仅将对纳米芯片制造工艺产生深远影响,而且也将鼓舞全世界各个实验室中 探索 将二维材料应用于更小更快的半导体的科学家们。

团队将他们的科研成果发表在最近一期的《自然电子学(Nature Electronics)》期刊上。

技术

他们演示的这种刻蚀技术,采用了加热至100摄氏度以上的探针,超越了在二硫化钼等二维半导体上制造金属电极的普遍方法。科学家们相信,这种过渡金属属于有望替代硅应用于原子级微型芯片的材料。团队开发的新制造方法,称为“热扫描探针刻蚀技术(t-SPL)”,相比于目前的电子束光刻技术(EBL)具有一系列优势。

价值

首先,热刻蚀技术显著提升了二维晶体管的质量,抵消了肖特基势垒。肖特基势垒阻碍了二维衬底与金属交界处的电子流动。其次,不同于EBL,热刻蚀技术使芯片制造者可轻松获取二维半导体图像,然后在期望的位置刻画电极。再次, t-SPL 制造系统有望显著减少初始投入以及运营成本:它们通过在一般环境条件下的运作大幅降低功耗,无需生成高能电子以及超高真空。最后,这种热加工方法很容易通过采用“并行”的热探针来扩展,从而应用于工业生产。

Riedo 表示,她希望 t-SPL 将许多加工过程带出稀缺的净室,带入个人实验室。在净室中,研究人员们必须为这些昂贵的设备争取时间;而在个人实验室中,他们将迅速地推进材料科研与芯片设计。3D打印机这个先例,就是一个很好的类比。有朝一日,这些低于10纳米分辨率的 t-SPL 工具,在普通环境条件下,依靠标准的120伏电源运行,将遍及像她的实验室一样的各个研究实验室。

参考资料

【1】https://engineering.nyu.edu/news/breakthrough-reported-fabricating-nanochips

【2】https://www.nature.com/articles/ncomms8702

【3】Xiaorui Zheng, Annalisa Calò, Edoardo Albisetti, Xiangyu Liu, Abdullah Sanad M. Alharbi, Ghidewon Arefe, Xiaochi Liu, Martin Spieser, Won Jong Yoo, Takashi Taniguchi, Kenji Watanabe, Carmela Aruta, Alberto Ciarrocchi, Andras Kis, Brian S. Lee, Michal Lipson, James Hone, Davood Shahrjerdi, Elisa Riedo. Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography . Nature Electronics, 20192 (1): 17 DOI: 10.1038/s41928-018-0191-0


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8651912.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-19
下一篇 2023-04-19

发表评论

登录后才能评论

评论列表(0条)

保存