半导体
激光器是成熟较早、进展较快的一类激光器,由于它的
波长范围宽,制作简单、成本低、易于大量生产,并且由于体积小、重量轻、寿命长,因此,品种发展快,应用范围广,目前已超过300种,半导体激光器的最主要应用领域是Gb局域网,850nm波长的半导体激光器适用于)1Gh/。局域网,1300nm -1550nm波长的半导体激光器适用于1OGb局域网系统.半导体激光器的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核心技术.半导体激光器在激光测距、激光雷达、激光通信、激光模拟武器、激光警戒、激光制导跟踪、引燃引爆、自动控制、检测仪器等方面获得了广泛的应用,形成了广阔的市场。1978年,半导体激光器开始应用于光纤通信系统,半导体激光器可以作为光纤通信的光源和指示器以及通过大规模集成电路平面工艺组成光电子系统.由于半导体激光器有着超小型、高效率和高速工作的优异特点,所以这类器件的发展,一开始就和光通信技术紧密结合在一起,它在光通信、光变换、光互连、并行光波系统、光信息处理和光存贮、光计算机外部设备的光祸合等方面有重要用途.半导体激光器的问世极大地推动了信息光电子技术的发展,到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源.半导体激光器再加上低损耗光纤,对光纤通信产生了重大影响,并加速了它的发展.因此可以说,没有半导体激光器的出现,就没有当今的光通信.GaAs/GaAlA。双异质结激光器是光纤通信和大气通信的重要光源,如今,凡是长距离、大容量的光信息传输系统无不都采用分布反馈式半导体激光器(DFB一LD).半导体激光器也广泛地应用于光盘技术中,光盘技术是集计算技术、激光技术和数字通信技术于一体的综合性技术.是大容t.高密度、快速有效和低成本的信息存储手段,它需要半导体激光器产生的光束将信息写人和读出。
荧光光谱的产生机理是这样的:被激发的π电子发生跃迁后,在向基态跃迁的过程中,会经过不同的激发态,只有在第一激发单从态,也就是最低激发态的电子向基态跃迁时,才会发出
荧光,否则则会以磷光或热辐射的形式放出热量。这就是说,荧光的光谱是不会随着激发波长的改变而改变的,当然量子点荧光除外。但是当以化合物的最大吸收波长为激发波长时(l理论上),这个时候发生跃迁的电子数越多,所以荧光强度也越大。
激发光谱是固定荧光波长,测定不同波长的激发光激发所得到的荧光强度,激发光谱相当于吸收光谱,光谱上荧光强度最大处对应的波长是激发光最灵敏的波长。
而荧光发射光谱是固定激发波长(不一定是最大激发波长,有的仪器会固定特征波长,像960荧光就固定了激发波长为365nm),测定不同荧光波长时的荧光强度。
荧光光谱与激发光波长无关,荧光的发射过程是出于不同激发态分子的荧光发射,电子最终都是从第一激发态的最低能级开始,直接发射荧光回到基态的各个振动能级。
荧光波长要比激发波长长。
评论列表(0条)