氮化镓如果应有在充电器上可以实现非常明显的升级,采用氮化镓材料做出来的充电头,体积和苹果5W差不多大的情况下,能实现更大的功率。
氮化镓充电头拥有更小的体积,却能够实现更大的功率,提高充电能力。
那么,什么是氮化镓材料呢?
氮化镓号称第三代半导体核心材料。氮化镓,分子式GaN,英文名称Gallium nitride,是氮和镓的化合物,是一种直接能隙(direct bandgap)的半导体
大部分行业的基础材料是硅,从电子行业看硅是非常重要的材料。但随着硅极限被逐步逼近,基本上现在硅的开发达到了瓶颈,许多产业已经开始努力寻找更合适的替代品,氮化镓就是这样进入到了人们眼中。
氮化镓号称第三代半导体核心材料。相对硅而言,氮化镓拥有更宽的带隙,宽带隙也意味着,氮化镓能比硅承受更高的电压,拥有更好的导电能力。简而言之两种材料在相同体积下,氮化镓比硅的效率高出不少。如果氮化镓替换现在所有电子设备,可能会让电子产品的用电量再减少10%或者25%。
【氮化镓能比硅承受更高的电压,拥有更好的导电能力】这意味着,在许多电源管理产品中,氮化镓是更强的存在。应用层面,采用氮化镓做充电器的话能够实现更快充电更小体积。
打个比方说,采用氮化镓材料做出来的充电头,体积和苹果5W差不多大的情况下,能实现更多的功率。苹果的5W充电头实现的充电效率相信大家都懂的,未来新的材料大规模应有后就有望改变这种情况。毕竟,市场上更好的方案出现,很可能会倒逼苹果进步。
未来一段时间中,采用氮化镓材料做出来的充电器会越来越多,能大大提升产品的充电能力。
氮化镓,化学式GaN,英文名称Gallium nitride,分子量83.73,是氮和镓的化合物,是一种直接能隙的半导体,此化合物结构类似纤锌矿,硬度很高。氮化镓的能隙很宽,为3.4电子伏特。性质与稳定性
如果遵照规格使用和储存则不会分解。
避免接触氧化物,热,水分/潮湿。
GaN在1050℃开始分解:2GaN(s)=2Ga(g)+N2(g)。X射线衍射已经指出GaN晶体属纤维锌矿晶格类型的六方晶系。
在氮气或氦气中当温度为1000℃时GaN会慢慢挥发,证明GaN在较高的温度下是稳定的,在1130℃时它的蒸气压比从焓和熵计算得到的数值低,这是由于有多聚体分子(GaN)x的存在。
GaN不被冷水或热水,稀的或浓的盐酸、硝酸和硫酸,或是冷的40%HF所分解。在冷的浓碱中也是稳定的,但在加热的情况下能溶于碱中。
材料特性
GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700℃,GaN具有高的电离度,在Ⅲ—Ⅴ族化合物中是最高的(0.5或0.43)。在大气压力下,GaN晶体一般是六方纤锌矿结构。它在一个元胞中有4个原子,原子体积大约为GaAs的一半。因为其硬度高,又是一种良好的涂层保护材料。
化学特性
在室温下,GaN不溶于水、酸和碱,而在热的碱溶液中以非常缓慢的速度溶解。NaOH、H2SO4和H3PO4能较快地腐蚀质量差的GaN,可用于这些质量不高的GaN晶体的缺陷检测。GaN在HCL或H2气下,在高温下呈现不稳定特性,而在N2气下最为稳定。
结构特性
GaN的晶体结构主要有两种,分别是纤锌矿结构与闪锌矿结构。
氮化镓的应用
氮化镓号称第三代半导体核心材料。相对硅而言,氮化镓拥有更宽的带隙,宽带隙也意味着,氮化镓能比硅承受更高的电压,拥有更好的导电能力。简而言之两种材料在相同体积下,氮化镓比硅的效率高出不少。如果氮化镓替换现在所有电子设备,可能会让电子产品的用电量再减少10%或者25%。,采用氮化镓为材料基础做出的充电器,能够实现更好的功率,带来更小的体积。早期的氮化镓材料被运用到通信、军工领域,随着技术的进步以及人们的需求,氮化镓产品已经走进了我们生活中,在充电器中的应用也逐步布局开来。氮化镓是目前全球最快功率开关器件之一,并且可以在高速开关的情况下仍保持高效率水平,能够应用于更小的变压器,让充电器可以有效缩小产品尺寸。比如导入USB PD快充参考设计,使目前常见的45W适配器设计可以采用30W或更小的外形设计。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)