易车讯 日前,东芝宣布开发成功了新型“透射型亚氧化铜(Cu2O)太阳能电池”,将为实现无充电EV(电动汽车)等做出贡献。据称,引擎盖和车顶搭载此太阳能电池,1天可为车辆提供35km的续航里程(以电耗12.5km/kWh测算)。
新型太阳能电池通过抑制发电层的杂质,实现了世界最高的发电效率8.4%。这种太阳能电池安装在电动车引擎盖和车顶的情况下,不充电的续航里程可以达到每天约35公里。将来一天大约可以行驶40公里,行驶所消耗的电通过太阳能发电补充到蓄电池中,可以进行更长距离的行驶。也就是说,在未来,电动车甚至可以不充电就能持续行驶。
透射型亚氧化铜(Cu2O)太阳能电池是低成本、高效率的串联型太阳能电池。所谓串联型太阳能电池,其特点是将两个太阳能电池组件作为底部组件和顶部组件重叠在一起,通过两个组件发电,提高整体的发电效率。
根据此次发表的技术,通过将透射型Cu2O太阳能电池堆叠在高效Si太阳能电池上,可以将整体发电效率提高到27.4%。
透射型Cu2O太阳能电池以铜和氧的化合物Cu2O为主要材料,与III-V族半导体相比,基板、原材料、制造设备都很便宜,有望大幅降低成本。当然,如果采用III-V族半导体,其整体发电效率可提高到30%。
另外,太阳能电池的单体重量很轻,每平米的重量不到1公斤,大约是一半左右。而整体重量取决于汽车制造商选择什么样的保护部件。
据相关机构测算,配备高效率太阳能电池的汽车如果电耗为12.5km/kWh,其不充电的情况下一天的续航距离是35公里。而如果使用更昂贵的材料的太阳能电池,其整体发电效率可提高到30%,则可提供一天39公里的续航里程。
第四代半导体材料:以氧化镓(Ga2O3)为代表
作为新型的宽禁带半导体材料,氧化镓(Ga2O3)由于自身的优异性能,凭借其比第三代半导体材料SiC和GaN更宽的禁带,在紫外探测、高频功率器件等领域吸引了越来越多的关注和研究。
氧化镓是一种宽禁带半导体,禁带宽度Eg=4.9eV,其导电性能和发光特性良好,因此,其在光电子器件方面有广阔的应用前景,被用作于Ga基半导体材料的绝缘层,以及紫外线滤光片。
第四代半导体的发展背景
随着量子信息、人工智能等高新技术的发展,半导体新体系及其微电子等多功能器件技术也在更新迭代。虽然前三代半导体技术持续发展,但也已经逐渐呈现出无法满足新需求的问题,特别是难以同时满足高性能、低成本的要求。
此背景下,人们将目光开始转向拥有小体积、低功耗等优势的第四代半导体。第四代半导体具有优异的物理化学特性、良好的导电性以及发光性能,在功率半导体器件、紫外探测器、气体传感器以及光电子器件领域具有广阔的应用前景。
目前具有发展潜力成为第四代半导体技术的主要材料体系主要包括:窄带隙的锑化镓、铟化砷化合物半导体;超宽带隙的氧化物材料;其他各类低维材料如碳基纳米材料、二维原子晶体材料等。
当前前沿科学或技术有:反隐身技术、基因技术、脑科学、生命科学、谷歌支持的“延长人类寿命计划”、空气屏幕、直接投影到视网膜、透明手机、VR技术,纳米材料等技术、
反隐身技术,是研究如何使隐身措施的效果降低甚至失效的技术。隐身技术实质上就是尽量降低飞机的雷达、红外、激光、电视、目视及声学特性,使敌方各种探测设备很难发现、探测和跟踪,降低敌方的精确制导武器的作战效果,从而提高飞机的生存能力。
雷达隐身是首先发展和使用的隐身技术,因此反雷达隐身也是当前重点发展的反隐身技术。现代战场上的侦察探测系统主要是雷达、红外、电子、可见光、声波等探测系统,因此武器的隐身技术除了传统的雷达隐身和红外隐身外,还有光学隐身、等离子体隐身等。
前沿科技热点:
1、量子信息处理
量子信息处理,其基本思想是以原子、电子、光子层次微观世界的粒子的存在状态及相互作用规律来编码和处理信息,借助量子叠加和量子纠缠等独特物理现象,以经典理论无法实现的方式获取、传输和处理信息。量子信息处理技术主要包括量子计算和量子通信。
量子计算包含处理器、编码和软件算法等关键技术。近年来,这些技术发展较快,但仍面临量子比特数量少、相干时间短、出错率高等诸多挑战,目前处于技术研究和原理样机研制验证的关键阶段,超过经典计算的性能优势尚未得到充分证明。
量子通信与现有通信技术不同,可以实现量子态信息的传输,主要分量子隐形传态(Quantum Teleportation,QT)和量子密钥分发(Quantum Key Distribution,QKD)两类。
基于QT的量子通信和量子互联网仍将是未来量子信息技术领域的前沿研究特点。QKD从理论协议到器件系统初步成熟,目前已进入产业化应用的初级阶段。
2、第三代半导体
国际上一般将禁带宽度(Eg)大于或等于2.3电子伏特(eV)的半导体材料称为第三代半导体。常见的第三代半导体材料包括碳化硅(SiC)、氮化镓(GaN)、金刚石、氧化锌、氮化铝等。
第三代半导体材料具有高禁带宽度、高热导率、高击穿场强、高饱和电子漂移速率和高键合能等特点,其器件具有高频、大功率、低损耗、耐高压、耐高温、抗辐射能力强等优势。
关键技术点包括:大尺寸、低缺陷衬底、外延制备技术硅基GaN外延技术高质量SiC厚外延技术高可靠封装技术。
技术发展的竞争态势表现为:产业链(衬底、外延片、器件、模组、下游应用等)各环节主要由美欧日主导全球SiC市场由美国、欧洲、日本等垄断GaN市场由日本厂商主导,住友电工、三菱化学及住友化学3家企业占据超过85%的市场份额。
第三代半导体材料的应用前景十分广阔,主要应用领域包括半导体照明、电力电子器件、激光器和探测器以及水制氢、生物传感器等。
3、增强分析
增强分析是将人工智能技术赋能商业智能,具体而言,是将机器学习技术和自然语言处理技术应用在BI领域的数据与分析中。增强分析增强了人类智力和情境感知,改变了数据管理、分析和商业智能的方法,改变了数据科学的面貌和机器学习/人工智能模型的开发利用。
与传统的人工数据挖掘相比,增强分析采用一系列的算法和集成学习技术,向用户解释可执行的结果,降低了丢失重要数据结论的风险。
高德纳咨询公司预测,未来2~5年,增强分析将成为BI市场的主导趋势。采用了增强分析技术生成的机器学习模型正在被越来越多地植入企业的应用程序中,帮助人力资源、金融、销售、市场、售后服务、采购和资产管理部门的员工进行商业决策与执行。
4、人工智能芯片
人工智能芯片通常是指针对人工智能算法做了特殊加速设计的芯片。人工智能芯片按技术架构分为图像处理单元(GPU)、半定制化的现场可编程逻辑门阵列(FPGA)、全定制化专用集成电路(ASIC)、神经拟态芯片按功能分为训练环节芯片、推断环节芯片按应用场景分为服务器端(云端)、移动端(终端)。
目前,GPU已经发展到较为成熟的阶段。谷歌、脸书、微软、推特和百度等公司都在使用GPU分析图片、视频和音频文件,以改进搜索和图像标签等应用功能。很多汽车厂商也在使用GPU发展无人驾驶。
虽然人工智能芯片技术发展较快,但是其在现阶段还处于产业化早期。各企业之间的水平有差距,但基本还处于同一起跑线,只有那些技术有重大突破、能够先一步产业化的企业才能引领行业的发展。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)