半导体包括哪些电子元器件?半导体电子元器件详细介绍

半导体包括哪些电子元器件?半导体电子元器件详细介绍,第1张

所谓半导体就是指导电性能介于金属导体和绝缘体之间的物质,一般是固体(如锗、硅和某些化合物),其中杂质含量和外界条件的改变(如温度变化、受光照射等)都会使其导电性发生变化。 目前半导体元件包括 : 二极管、三极管、场效应管、晶闸管、达林顿管、LED以及含有半导体管的集成块、芯片等。 ① 二极管: 二极管,(英语:Diode),电子元件当中,二极管最普遍的功能就是只允许电流由单一方向通过(称为顺向偏压),反向时阻断 (称为逆向偏压)。因此,二极管可以想成电子版的逆止阀。 ② 三极管: 由三个电极组成的一种电子元件。有电子管三极管和半导体三极管两种。电子管三极管由屏极、栅极、阴极组成;半导体三极管由集电极、基极、发射极组成。 ③ 场效应管: 场效应管属于电压控制元件,这一点类似于电子管的三极管,但它的构造与工作原理和电子管是截然不同的,与双极型晶体管相比,场效应晶体管具有如下特点: (1)场效应管是电压控制器件,它通过UGS来控制ID; (2)场效应管的输入端电流极小,因此它的输入电阻很大。 (3)它是利用多数载流子导电,因此它的温度稳定性较好; (4)它组成的放大电路的电压放大系数要小于三极管组成放大电路的电压放大系数; (5)场效应管的抗辐射能力强; (6)由于不存在杂乱运动的少子扩散引起的散粒噪声,所以噪声低。 ④ 晶闸管: 晶闸管导通条件为:加正向电压且门极有触发电流;其派生器件有:快速晶闸管,双向晶闸管,逆导晶闸管,光控晶闸管等。它是一种大功率开关型半导体器件,在电路中用文字符号为“V”、“VT”表示(旧标准中用字母“SCR”表示)。 ⑤ 达林顿管 达林顿管原理 达林顿管又称复合管。它将二只三极管适当的连接在一起,以组成一只等效的新的三极管。这等效于三极管的放大倍数是二者之积。达林顿管的应用: (1)用于大功率开关电路、电机调速、逆变电路。 (12驱动小型继电器 利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。虚线框内是小功率NPN达林顿管FN020。 (3)驱动LED智能显示屏 ⑥ LED二极管 发光二极管(LightEmitting Diode,LED),是一种半导体组件。初时多用作为指示灯、显示发光二极管板等;随着白光LED的出现,也被用作照明。 LED被称为第四代照明光源或绿色光源,具有节能、环保、寿命长、体积小等特点,广泛应用于各种指示、显示、装饰、背光源、普通照明和城市夜景等领域。 以上就是简单整理的几大常用的半导体电子元器件,在电子领域应用非常的广泛,大家可以了解下。 本文由IC先生网编辑整理,有任何问题欢迎交流讨论。

.1 半导体物理基础 本章从半导体器件的工作机理出发,简单介绍半导体物理基础知识,包括本征半导体,杂质半导体,PN结分别讨论晶体二极管的特性和典型应用电路,双极型晶体管和场效应管的结构,工作机理,特性和应用电路,重点是掌握器件的特性. 媒质导体:对电信号有良好的导通性,如绝大多数金属,电解液,以及电离气体.绝缘体:对电信号起阻断作用,如玻璃和橡胶,其电阻率介于108 ~ 1020 ·m. 半导体:导电能力介于导体和绝缘体之间,如硅 (Si) ,锗 (Ge) 和砷化镓 (GaAs) .半导体的导电能力随温度,光照和掺杂等因素发生显著变化,这些特点使它们成为制作半导体元器件的重要材料.4.1.1 本征半导体 纯净的硅和锗单晶体称为本征半导体.硅和锗的原子最外层轨道上都有四个电子,称为价电子,每个价电子带一个单位的负电荷.因为整个原子呈电中性,而其物理化学性质很大程度上取决于最外层的价电子,所以研究中硅和锗原子可以用简化模型代表 .每个原子最外层轨道上的四个价电子为相邻原子核所共有,形成共价键.共价键中的价电子是不能导电的束缚电子. 价电子可以获得足够大的能量,挣脱共价键的束缚,游离出去,成为自由电子,并在共价键处留下带有一个单位的正电荷的空穴.这个过程称为本征激发.本征激发产生成对的自由电子和空穴,所以本征半导体中自由电子和空穴的数量相等.价电子的反向递补运动等价为空穴在半导体中自由移动.因此,在本征激发的作用下,本征半导体中出现了带负电的自由电子和带正电的空穴,二者都可以参与导电,统称为载流子. 自由电子和空穴在自由移动过程中相遇时,自由电子填入空穴,释放出能量,从而消失一对载流子,这个过程称为复合, 平衡状态时,载流子的浓度不再变化.分别用ni和pi表示自由电子和空穴的浓度 (cm-3) ,理论上 其中 T 为绝对温度 (K) EG0 为T = 0 K时的禁带宽度,硅原子为1.21 eV,锗为0.78 eVk = 8.63 10- 5 eV / K为玻尔兹曼常数A0为常数,硅材料为3.87 1016 cm- 3 K- 3 / 2,锗为1.76 1016 cm- 3 K- 3 / 2. 4.1.2 N 型半导体和 P 型半导体 本征激发产生的自由电子和空穴的数量相对很少,这说明本征半导体的导电能力很弱.我们可以人工少量掺杂某些元素的原子,从而显著提高半导体的导电能力,这样获得的半导体称为杂质半导体.根据掺杂元素的不同,杂质半导体分为 N 型半导体和 P 型半导体. 一,N 型半导体在本征半导体中掺入五价原子,即构成 N 型半导体.N 型半导体中每掺杂一个杂质元素的原子,就提供一个自由电子,从而大量增加了自由电子的浓度一一施主电离多数载流子一一自由电子少数载流子一一空穴但半导体仍保持电中性 热平衡时,杂质半导体中多子浓度和少子浓度的乘积恒等于本征半导体中载流子浓度 ni 的平方,所以空穴的浓度 pn为因为 ni 容易受到温度的影响发生显著变化,所以 pn 也随环境的改变明显变化. 自由电子浓度杂质浓度二,P 型半导体在本征半导体中掺入三价原子,即构成 P 型半导体.P 型半导体中每掺杂一个杂质元素的原子,就提供一个空穴,从而大量增加了空穴的浓度一一受主电离多数载流子一一空穴少数载流子一一自由电子但半导体仍保持电中性而自由电子的浓度 np 为环境温度也明显影响 np 的取值. 空穴浓度掺杂浓庹4.1.3 漂移电流和扩散电流 半导体中载流子进行定向运动,就会形成半导体中的电流.半导体电流半导体电流漂移电流:在电场的作用下,自由电子会逆着电场方向漂移,而空穴则顺着电场方向漂移,这样产生的电流称为漂移电流,该电流的大小主要取决于载流子的浓度,迁移率和电场强度.扩散电流:半导体中载流子浓度不均匀分布时,载流子会从高浓度区向低浓度区扩散,从而形成扩散电流,该电流的大小正比于载流子的浓度差即浓度梯度的大小.4.2 PN 结 通过掺杂工艺,把本征半导体的一边做成 P 型半导体,另一边做成 N 型半导体,则 P 型半导体和 N 型半导体的交接面处会形成一个有特殊物理性质的薄层,称为 PN 结. 4.2.1 PN 结的形成 多子扩散空间电荷区,内建电场和内建电位差的产生 少子漂移动态平衡空间电荷区又称为耗尽区或势垒区.在掺杂浓度不对称的 PN 结中,耗尽区在重掺杂一边延伸较小,而在轻掺杂一边延伸较大.4.2.2 PN 结的单向导电特性 一,正向偏置的 PN 结正向偏置耗尽区变窄扩散运动加强,漂移运动减弱正向电流二,反向偏置的 PN 结反向偏置耗尽区变宽扩散运动减弱,漂移运动加强反向电流PN 结的单向导电特性:PN 结只需要较小的正向电压,就可以使耗尽区变得很薄,从而产生较大的正向电流,而且正向电流随正向电压的微小变化会发生明显改变.而在反偏时,少子只能提供很小的漂移电流,并且基本上不随反向电压而变化.4.2.3 PN 结的击穿特性 当 PN 结上的反向电压足够大时,其中的反向电流会急剧增大,这种现象称为 PN 结的击穿. 雪崩击穿:反偏的 PN 结中,耗尽区中少子在漂移运动中被电场作功,动能增大.当少子的动能足以使其在与价电子碰撞时发生碰撞电离,把价电子击出共价键,产生一对自由电子和空穴,连锁碰撞使得耗尽区内的载流子数量剧增,引起反向电流急剧增大.雪崩击穿出现在轻掺杂的 PN 结中.齐纳击穿:在重掺杂的 PN 结中,耗尽区较窄,所以反向电压在其中产生较强的电场.电场强到能直接将价电子拉出共价键,发生场致激发,产生大量的自由电子和空穴,使得反向电流急剧增大,这种击穿称为齐纳击穿.PN 结击穿时,只要限制反向电流不要过大,就可以保护 PN 结不受损坏.PN 结击穿4.2.4 PN 结的电容特性 PN 结能够存贮电荷,而且电荷的变化与外加电压的变化有关,这说明 PN 结具有电容效应. 一,势垒电容 CT0为 u = 0 时的 CT,与 PN 结的结构和掺杂浓度等因素有关UB为内建电位差n 为变容指数,取值一般在 1 / 3 ~ 6 之间.当反向电压 u 绝对值增大时,CT 将减小. 二,扩散电容 PN 结的结电容为势垒电容和扩散电容之和,即 Cj = CT + CD.CT 和 CD 都随外加电压的变化而改变,所以都是非线性电容.当 PN 结正偏时,CD 远大于 CT ,即 Cj CD 反偏的 PN 结中,CT 远大于 CD,则 Cj CT .4.3 晶体二极管 二极管可以分为硅二极管和锗二极管,简称为硅管和锗管. 4.3.1 二极管的伏安特性一一 指数特性IS 为反向饱和电流,q 为电子电量 (1.60 10- 19C) UT = kT/q,称为热电压,在室温 27℃ 即 300 K 时,UT = 26 mV. 一,二极管的导通,截止和击穿当 uD >0 且超过特定值 UD(on) 时,iD 变得明显,此时认为二极管导通,UD(on) 称为导通电压 (死区电压) uD 0.7 V时,D处于导通状态,等效成短路,所以输出电压uo = ui - 0.7当ui 0时,D1和D2上加的是正向电压,处于导通状态,而D3和D4上加的是反向电压,处于截止状态.输出电压uo的正极与ui的正极通过D1相连,它们的负极通过D2相连,所以uo = ui当ui 0时,二极管D1截止,D2导通,电路等效为图 (b) 所示的反相比例放大器,uo = - (R2 / R1)ui当ui 0时,uo1 = - ui,uo = ui当ui 2.7 V时,D导通,所以uo = 2.7 V当ui <2.7 V时,D截止,其支路等效为开路,uo = ui.于是可以根据ui的波形得到uo的波形,如图 (c) 所示,该电路把ui超出2.7 V的部分削去后进行输出,是上限幅电路. [例4.3.7]二极管限幅电路如图 (a) 所示,其中二极管D1和D2的导通电压UD(on) = 0.3 V,交流电阻rD 0.输入电压ui的波形在图 (b) 中给出,作出输出电压uo的波形. 解:D1处于导通与截止之间的临界状态时,其支路两端电压为 - E - UD(on) = - 2.3 V.当ui - 2.3 V时,D1截止,支路等效为开路,uo = ui.所以D1实现了下限幅D2处于临界状态时,其支路两端电压为 E + UD(on) = 2.3 V.当ui >2.3 V时,D2导通,uo = 2.3 V当ui <2.3 V时,D2截止,支路等效为开路,uo = ui.所以D2实现了上限幅.综合uo的波形如图 (c) 所示,该电路把ui超出 2.3 V的部分削去后进行输出,完成双向限幅. 限幅电路的基本用途是控制输入电压不超过允许范围,以保护后级电路的安全工作.设二极管的导通电压UD(on) = 0.7 V,在图中,当 - 0.7 V <ui 0.7 V时,D1导通,D2截止,R1,D1和R2构成回路,对ui分压,集成运放输入端的电压被限制在UD(on) = 0.7 V当ui <- 0.7 V时,D1截止,D2导通, R1,D2和R2构成回路,对ui分压,集成运放输入端的电压被限制在 - UD(on) = - 0.7 V.该电路把ui限幅到 0.7 V到 - 0.7 V之间,保护集成运放.图中,当 - 0.7 V <ui 5.7 V时,D1导通,D2截止,A / D的输入电压被限制在5.7 V当ui <- 0.7 V时,D1截止,D2导通,A / D的输入电压被限制在 - 0.7 V.该电路对ui的限幅范围是 - 0.7 V到 5.7 V.[例4.3.8]稳压二极管限幅电路如图 (a) 所示,其中稳压二极管DZ1和DZ2的稳定电压UZ = 5 V,导通电压UD(on) 近似为零.输入电压ui的波形在图 (b) 中给出,作出输出电压uo的波形. 解:当 | ui | 1 V时,DZ1和DZ2一个导通,另一个击穿,此时反馈电流主要流过稳压二极管支路,uo稳定在 5 V.由此得到图 (c) 所示的uo波形. 图示电路为单运放弛张振荡器.其中集成运放用作反相迟滞比较器,输出电源电压UCC或 - UEE,R3隔离输出的电源电压与稳压二极管DZ1和DZ2限幅后的电压.仍然认为DZ1和DZ2的稳定电压为UZ,而导通电压UD(on) 近似为零.经过限幅,输出电压uo可以是高电压UOH = UZ或低电压UOL = - UZ.三,电平选择电路 [例4.3.9]图 (a) 给出了一个二极管电平选择电路,其中二极管D1和D2为理想二极管,输入信号ui1和ui2的幅度均小于电源电压E,波形如图 (b) 所示.分析电路的工作原理,并作出输出信号uo的波形. 解:因为ui1和ui2均小于E,所以D1和D2至少有一个处于导通状态.不妨假设ui1 ui2时,D2导通,D1截止,uo = ui2只有当ui1 = ui2时,D1和D2才同时导通,uo = ui1 = ui2.uo的波形如图 (b) 所示.该电路完成低电平选择功能,当高,低电平分别代表逻辑1和逻辑0时,就实现了逻辑"与"运算. 四,峰值检波电路 [例4.3.10]分析图示峰值检波电路的工作原理. 解:电路中集成运放A2起电压跟随器作用.当ui >uo时,uo1 >0,二极管D导通,uo1对电容C充电,此时集成运放A1也成为跟随器,uo = uC ui,即uo随着ui增大当ui <uo时,uo1 <0,D截止,C不放电,uo = uC保持不变,此时A1是电压比较器.波形如图 (b) 所示.电路中场效应管V用作复位开关,当复位信号uG到来时直接对C放电,重新进行峰值检波. 4.4 双极型晶体管 NPN型晶体管 PNP型晶体管 晶体管的物理结构有如下特点:发射区相对基区重掺杂基区很薄,只有零点几到数微米集电结面积大于发射结面积. 一,发射区向基区注入电子_ 电子注入电流IEN,空穴注入电流IEP_二,基区中自由电子边扩散边复合_ 基区复合电流IBN_三,集电区收集自由电子_ 收集电流ICN反向饱和电流ICBO4.4.1 晶体管的工作原理晶体管三个极电流与内部载流子电流的关系: 共发射极直流电流放大倍数:共基极直流电流放大倍数:换算关系:晶体管的放大能力参数 晶体管的极电流关系 描述:描述: 4.4.2 晶体管的伏安特性 一,输出特性 放大区(发射结正偏,集电结反偏 )共发射极交流电流放大倍数:共基极交流电流放大倍数:近似关系:恒流输出和基调效应饱和区(发射结正偏,集电结正偏 )_ 饱和压降 uCE(sat) _截止区(发射结反偏,集电结反偏 )_极电流绝对值很小二,输入特性 当uBE大于导通电压 UBE(on) 时,晶体管导通,即处于放大状态或饱和状态.这两种状态下uBE近似等于UBE(on) ,所以也可以认为UBE(on) 是导通的晶体管输入端固定的管压降当uBE 0,所以集电结反偏,假设成立,UO = UC = 4 V当UI = 5 V时,计算得到UCB = - 3.28 V <0,所以晶体管处于饱和状态,UO = UCE(sat) . [例4.4.2]晶体管直流偏置电路如图所示,已知晶体管的UBE(on) = - 0.7 V, = 50.判断晶体管的工作状态,并计算IB,IC和UCE. 解:图中晶体管是PNP型,UBE(on) = UB - UE = (UCC - IBRB) - IERE = UCC - IBRB - (1+b)IBRE = - 0.7 V,得到IB = - 37.4 A <0,所以晶体管处于放大或饱和状态.IC = bIB = - 1.87 mA,UCB = UC - UB = (UCC - ICRC) - (UCC - IBRB) = - 3.74 V | UGS(off) | ) uGS和iD为平方率关系.预夹断导致uDS对iD的控制能力很弱.可变电阻区(| uGS | | UGS(off) |且| uDG | | UGS(off) |)iD = 0三,转移特性预夹断4.5.2 绝缘栅场效应管 绝缘栅场效应管记为MOSFET,根据结构上是否存在原始导电沟道,MOSFET又分为增强型MOSFET和耗尽型MOSFET. 一,工作原理 UGS = 0 ID = 0UGS >UGS(th) 电场 反型层 导电沟道 ID >0UGS控制ID的大小N沟道增强型MOSFETN沟道耗尽型MOSFET在UGS = 0时就存在ID = ID0.UGS的增大将增大ID.当UGS - UGS(off) ,所以该场效应管工作在恒流区.图 (b) 中是P沟道增强型MOSFET,UGS = - 5 (V) - UGS(th) ,所以该场效应管工作在可变电阻区. 解:图 (a) 中是N沟道JFET,UGS = 0 >UGS(off) ,所以该场效应管工作在恒流区或可变电阻区,且ID一,方波,锯齿波发生器 4.5.5 场效应管应用电路举例 集成运放A1构成弛张振荡器,A2构成反相积分器.振荡器输出的方波uo1经过二极管D和电阻R5限幅后,得到uo2,控制JFET开关V的状态.当uo1为低电平时,V打开,电源电压E通过R6对电容C2充电,输出电压uo随时间线性上升当uo1为高电平时,V闭合,C2通过V放电,uo瞬间减小到零. 二,取样保持电路 A1和A2都构成跟随器,起传递电压,隔离电流的作用.取样脉冲uS控制JFET开关V的状态.当取样脉冲到来时,V闭合.此时,如果uo1 >uC则电容C被充电,uC很快上升如果uo1 <uC则C放电,uC迅速下降,这使得uC = uo1,而uo1 = ui,uo = uC ,所以uo = ui.当取样脉冲过去时,V打开,uC不变,则uo保持取样脉冲最后瞬间的ui值. 三,相敏检波电路 因此前级放大器称为符号电路.场效管截止场效管导通集成运放A2构成低通滤波器,取出uo1的直流分量,即时间平均值uo.uG和ui同频时,uo取决于uG和ui的相位差,所以该电路称为相敏检波电路. NPN晶体管结型场效应管JEFT增强型NMOSEFT指数关系平方律关系场效应管和晶体管的主要区别包括:晶体管处于放大状态或饱和状态时,存在一定的基极电流,输入电阻较小.场效应管中,JFET的输入端PN结反偏,MOSFET则用SiO2绝缘体隔离了栅极和导电沟道,所以场效应管的栅极电流很小,输入电阻极大.晶体管中自由电子和空穴同时参与导电,主要导电依靠基区中非平衡少子的扩散运动,所以导电能力容易受外界因素如温度的影响.场效应管只依靠自由电子和空穴之一在导电沟道中作漂移运动实现导电,导电能力不易受环境的干扰.场效应管的源极和漏极结构对称,可以互换使用.晶体管虽然发射区和集电区是同型的杂质半导体,但由于制作工艺不同,二者不能互换使用.

半导体的应用, 半导体有哪些常见的应用

半导体一般指矽晶体,它的导电性介于导体和绝缘体之间。

半导体是指导电能力介于金属和绝缘体之间的固体材料。按内部电子结构区分,半导体与绝缘体相似,它们所含的价电子数恰好能填满价带,并由禁带和上面的导带隔开。半导体与绝缘体的区别是禁带较窄,在2~3电子伏以下。

典型的半导体是以共价键结合为主的,比如晶体矽和锗。半导体靠导带中的电子或价带中的空穴导电。它的导电性一般通过掺入杂质原子取代原来的原子来控制。掺入的原子如果比原来的原子多一个价电子,则产生电子导电;如果掺入的杂质原子比原来的原子少一个价电子,则产生空穴导电。

半导体的应用十分广泛,主要是制成有特殊功能的元器件,如电晶体、积体电路、整流器、镭射器以及各种光电探测器件、微波器件等。

半导体的应用的问题

1楼2楼耸人听闻,哪有那么严重。在半导体材料投入使用以前二战都已经结束了,大量采用电子管的电器装置已经投入民用。众所周知的事实是前苏联半导体材料发展极度落后,无论米格-25歼击机还是联盟号宇宙飞船都还使用着电子管装置,直到九十年代以后俄罗斯才逐步跟上来。

对日常生活的影响,简单地说——

一切使用微控制器也就是所谓“电脑板”的电器都重归机械控制;

不会出现微型计算机,只有巨型机/大型机/小型机,即便有了个人电脑也要衣柜那么大个,耗电量惊人,绝对奢侈品,笔记本就更不用说了;

没有微机当然更没有游戏机了,玩魂斗罗超级玛丽警察抓小偷永远是幻想;

收音机最小也要新华词典那么大,注意:是辞典不是字典;

电视机仍然是阴极射线管的,因为根本生产不出液晶板,不过幸好还能看到彩电;

微波炉可能要洗碗柜那么大吧?因为电子管是很占体积的;

洗衣机是半自动型的,使用机械定时器——微波炉也是。

冰箱一定是外形大大,立升小小,噪音隆隆,前苏联就有那种玩意的实物;

照相机继续用胶卷的,什么数码DC/DV统统不存在;

摄像机会相当笨重,只能用录影带;

您好!这里是邮电局,打电话请用拨盘拨号,如需拨往外地请让我为您转接……呃,这位同志,程控交换机是什么东西?——某人工接线员;

不存在什么VCD、DVD,录影机/放像机也不太会普及——太大、太贵;

没有了微型计算机你会感觉到练得一笔好字的必要性;

飞机导d卫星飞船空间站照样满天飞,战舰航母潜艇坦克照样满世界溜达;

网际网路可能会有,但那将是各国官方、军方和科研机构御用的玩意,跟咱老百姓没啥关系;

……能想起来的差不多都写上了。

半导体的应用,最好说详细点。

试想过你的生活缺少了数字是什么概念吗?那将是一个混乱的世界,无论是你的手机号码、你的身份z号码、还是你家的门牌号,这些全部都是用数字表达的!电子游戏、电子邮件、数码音乐、数码照片、多媒体光碟、网路会议、远端教学、网上购物、电子银行和电子货币……几乎一切的东西都可以用0和1来表示。电脑和网际网路的出现让人们有了更大的想象和施展的空间,我们的生活就在这简单的“0”“1”之间变得丰富起来、灵活起来、愉悦起来,音像制品、手机、摄像机、数码相机、MP3、袖珍播放机、DVD播放机、PDA、多媒体、多功能游戏机、ISDN等新潮电子产品逐渐被人们所认识和接受,数字化被我们随身携带着,从而拥有了更加多变的视听新感受,音乐和感觉在数字化生活中静静流淌……

数字生活已成为资讯化时代的特征,它改变着人类生活的方方面面,在此背后,隐藏着新材料的巨大功勋,新材料是数字生活的“幕后英雄”。

计算机是数字生活中的重要装置,计算机的核心部件是中央处理器(CPU)和储存器(RAM),它们是以大规模积体电路为基础建造起来的,而这些积体电路都是由半导体材料做成的,Si片是第一代半导体材料,积体电路中采用的Si片必须要有大的直径、高的晶体完整性、高的几何精度和高的洁净度。为了使积体电路具有高效率、低能耗、高速度的效能,相继发展了GaAs、InP等第二代半导体单晶材料。SiC、GaN、ZnSe、金刚石等第三代宽禁带半导体材料、SiGe/Si、SOI(Silicon On Insulator)等新型矽基材料、超晶格量子阱材料可制作高温(300~500°C)、高频、高功率、抗辐射以及蓝绿光、紫外光的发光器件和探测器件,从而大幅度地提高原有矽积体电路的效能,是未来半导体材料的重要发展方向。

人机交换,常常需要将各种形式的资讯,如文字、资料、图形、影象和活动影象显示出来。静止资讯的显示手段最常用的如印表机、影印机、传真机和扫描器等,一般称为资讯的输出和输入装置。为提高解析度以及输入和输出的速度,需要发展高灵敏度和稳定的感光材料,例如镭射印表机和影印机上的感光鼓材料,目前使用的是无机的硒合金和有机的酞菁染料。显示活动影象资讯的主要部件是阴极射线管(CRT),广泛地应用在计算机终端显示器和平面电视上,CRT目前采用的电致发光材料,大都使用稀土掺杂(Tb3+、Sn3+、Eu3+等)和过渡元素掺杂(Mn2+)的硫化物(ZnS、CdS等)和氧化物(Y2O3、YAlO3)等无机材料。

为了减小CRT庞大的体积,资讯显示的趋势是高解析度、大显示容量、平板化、薄型化和大型化,为此主要采用了液晶显示技术(LCD)、场致发射显示技术(FED)、等离子体显示技术(PDP)和发光二极体显示技术(LED)等平板显示技术,广泛应用在高清晰度电视(HDTV)、电视电话、计算机(台式或可移动式)显示器、汽车用及个人数字化终端显示等应用目标上,CRT不再是一支独秀,而是形成与各种平板显示器百花争艳的局面。

在液晶显示技术中采用的液晶材料早已在手表、计算器、膝上型电脑、摄像机中得到应用,液晶材料较早使用的是苯基环己烷类、环己基环己烷类、吡啶类等向列相和手征相材料,后来发展了铁电型(FE)液晶,响应时间在微秒级,但铁电液晶的稳定性差,只能用分支法(side-chain)来改进。目前趋向开发反铁电液晶,因为它们的稳定性较高。

液晶显示材料在大萤幕显示中有一定的困难,目前作为大萤幕显示的主要候选物件为等离子体显示器(PDP)和发光二极体(LED)。PDP所用的荧光粉为掺稀土的钡铝氧化物。用类金刚石材料作冷阴极和稀土离子掺杂的氧化物作发光材料,推动场发射显示(FED)的发展。制作高亮度发光二极体的半导体材料主要为发红、橙、黄色的GaAs基和GaP基外延材料、发蓝光的GaN基和ZnSe基外延材料等。

由于因特网和多媒体技术的迅速发展,人类要处理、传输和储存超高资讯容量达太(兆兆)数字位(Tb,1012bits),超高速资讯流每秒达太位(Tb/s),可以说人类已经进入了太位资讯时代。现代的资讯储存方式多种多样,以计算机系统储存为例,储存方式分为随机记忆体储、线上外储存、离线外储存和离线储存。随机记忆体储器要求整合度高、资料存取速度快,因此一直以大规模整合的微电子技术为基础的半导体动态随机储存器(DRAM)为主,256兆位的随机动态储存器的电晶体超过2亿个。外储存大都采用磁记录方式,磁储存介质的主要形式为磁带、磁泡、软磁碟和硬磁碟。磁储存密度的提高主要依赖于磁介质材料的改进,相继采用了磁性氧化物(如g-Fe2O3、CrO2、金属磁粉等)、铁氧体系、超细磁性氧化物粉末、化学电镀钴镍合金或真空溅射蒸镀Co基合金连续磁性薄膜介质等材料,磁储存的资讯储存量从而有了很大的提高。固体(闪)储存器(flash memory)是不挥发可擦写的储存器,是基于半导体二极体的积体电路,比较紧凑和坚固,可以在记忆体与外存间插入使用。记录磁头铁芯材料一般用饱和磁感大的软磁材料,如80Ni-20Fe、Co-Zr-Nb、Fe-Ta-C、45Ni-55Fe、Fe-Ni-N、Fe-Si、Fe-Si-Ni、67Co-10Ni-23Fe等。近年来发展起来的巨磁阻(GMR)材料,在一定的磁场下电阻急剧减小,一般减小幅度比通常磁性金属与合金的磁电阻数值约高10余倍。GMR一般由自由层/导电层/钉扎层/反强磁性层构成,其中自由层可为Ni-Fe、Ni-Fe/Co、Co-Fe等强磁体材料,在其两端安置有Co-Cr-Pt等永磁体薄膜,导电层为数nm的铜薄膜,钉扎层为数nm的软磁Co合金,磁化固定层用5~40nm的Ni-O、Ni-Mn、Mn-In、Fe-Cr-Pt、Cr-Mn-Pt、Fe-Mn等反强磁体,并加Ru/Co层的积层自由结构。采用GMR效应的读出磁头,将磁碟记录密度一下子提高了近二十倍,因此巨磁阻效应的研究对发展磁储存有着非常重要的意义。

半导体的具体应用

最常见的:半导体收音机、掌上计算器、电脑内的主机板显示卡等硬体都要用道半导体、电视机里的部件也要用半导体晶片、手机内部的部件、汽车内也要用到的一些部件。目前大部分将用电器都要用到数字晶片,而不是模拟的(DSP),这些晶片说白了就是用半导体做成的。

半导体镭射器的应用

半导体二极体镭射器在镭射通讯、光储存、光陀螺、镭射列印、测距以及雷达等方面以及获得了广泛的应用

还可以作为固体镭射器的泵浦源,安防领域照明光源,现在应用的领域非常广了

半导体的三个广泛应用:

一、在无线电收音机(Radio)及电视机(Television)中,作为“讯号放大器/整流器”用。

二、近来发展太阳能(Solar Power),也用在光电池(Solar Cell)中。

三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,解析度可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是价效比极高的一种测温元件。

参考百度百科,仅供参考!

半导体在生活中的应用

试想过你的生活缺少了数字是什么概念吗?那将是一个混乱的世界,无论是你的手机号码、你的身份z号码、还是你家的门牌号,这些全部都是用数字表达的!电子游戏、电子邮件、数码音乐、数码照片、多媒体光碟、网路会议、远端教学、网上购物、电子银行和电子货币……几乎一切的东西都可以用0和1来表示。电脑和网际网路的出现让人们有了更大的想象和施展的空间,我们的生活就在这简单的“0”“1”之间变得丰富起来、灵活起来、愉悦起来,音像制品、手机、摄像机、数码相机、MP3、袖珍播放机、DVD播放机、PDA、多媒体、多功能游戏机、ISDN等新潮电子产品逐渐被人们所认识和接受,数字化被我们随身携带着,从而拥有了更加多变的视听新感受,音乐和感觉在数字化生活中静静流淌……

数字生活已成为资讯化时代的特征,它改变着人类生活的方方面面,在此背后,隐藏着新材料的巨大功勋,新材料是数字生活的“幕后英雄”。

计算机是数字生活中的重要装置,计算机的核心部件是中央处理器(CPU)和储存器(RAM),它们是以大规模积体电路为基础建造起来的,而这些积体电路都是由半导体材料做成的,Si片是第一代半导体材料,积体电路中采用的Si片必须要有大的直径、高的晶体完整性、高的几何精度和高的洁净度。为了使积体电路具有高效率、低能耗、高速度的效能,相继发展了GaAs、InP等第二代半导体单晶材料。SiC、GaN、ZnSe、金刚石等第三代宽禁带半导体材料、SiGe/Si、SOI(Silicon On Insulator)等新型矽基材料、超晶格量子阱材料可制作高温(300~500°C)、高频、高功率、抗辐射以及蓝绿光、紫外光的发光器件和探测器件,从而大幅度地提高原有矽积体电路的效能,是未来半导体材料的重要发展方向。

人机交换,常常需要将各种形式的资讯,如文字、资料、图形、影象和活动影象显示出来。静止资讯的显示手段最常用的如印表机、影印机、传真机和扫描器等,一般称为资讯的输出和输入装置。为提高解析度以及输入和输出的速度,需要发展高灵敏度和稳定的感光材料,例如镭射印表机和影印机上的感光鼓材料,目前使用的是无机的硒合金和有机的酞菁染料。显示活动影象资讯的主要部件是阴极射线管(CRT),广泛地应用在计算机终端显示器和平面电视上,CRT目前采用的电致发光材料,大都使用稀土掺杂(Tb3+、Sn3+、Eu3+等)和过渡元素掺杂(Mn2+)的硫化物(ZnS、CdS等)和氧化物(Y2O3、YAlO3)等无机材料。

为了减小CRT庞大的体积,资讯显示的趋势是高解析度、大显示容量、平板化、薄型化和大型化,为此主要采用了液晶显示技术(LCD)、场致发射显示技术(FED)、等离子体显示技术(PDP)和发光二极体显示技术(LED)等平板显示技术,广泛应用在高清晰度电视(HDTV)、电视电话、计算机(台式或可移动式)显示器、汽车用及个人数字化终端显示等应用目标上,CRT不再是一支独秀,而是形成与各种平板显示器百花争艳的局面。

在液晶显示技术中采用的液晶材料早已在手表、计算器、膝上型电脑、摄像机中得到应用,液晶材料较早使用的是苯基环己烷类、环己基环己烷类、吡啶类等向列相和手征相材料,后来发展了铁电型(FE)液晶,响应时间在微秒级,但铁电液晶的稳定性差,只能用分支法(side-chain)来改进。目前趋向开发反铁电液晶,因为它们的稳定性较高。

液晶显示材料在大萤幕显示中有一定的困难,目前作为大萤幕显示的主要候选物件为等离子体显示器(PDP)和发光二极体(LED)。PDP所用的荧光粉为掺稀土的钡铝氧化物。用类金刚石材料作冷阴极和稀土离子掺杂的氧化物作发光材料,推动场发射显示(FED)的发展。制作高亮度发光二极体的半导体材料主要为发红、橙、黄色的GaAs基和GaP基外延材料、发蓝光的GaN基和ZnSe基外延材料等。

由于因特网和多媒体技术的迅速发展,人类要处理、传输和储存超高资讯容量达太(兆兆)数字位(Tb,1012bits),超高速资讯流每秒达太位(Tb/s),可以说人类已经进入了太位资讯时代。现代的资讯储存方式多种多样,以计算机系统储存为例,储存方式分为随机记忆体储、线上外储存、离线外储存和离线储存。随机记忆体储器要求整合度高、资料存取速度快,因此一直以大规模整合的微电子技术为基础的半导体动态随机储存器(DRAM)为主,256兆位的随机动态储存器的电晶体超过2亿个。外储存大都采用磁记录方式,磁储存介质的主要形式为磁带、磁泡、软磁碟和硬磁碟。磁储存密度的提高主要依赖于磁介质材料的改进,相继采用了磁性氧化物(如g-Fe2O3、CrO2、金属磁粉等)、铁氧体系、超细磁性氧化物粉末、化学电镀钴镍合金或真空溅射蒸镀Co基合金连续磁性薄膜介质等材料,磁储存的资讯储存量从而有了很大的提高。固体(闪)储存器(flash memory)是不挥发可擦写的储存器,是基于半导体二极体的积体电路,比较紧凑和坚固,可以在记忆体与外存间插入使用。记录磁头铁芯材料一般用饱和磁感大的软磁材料,如80Ni-20Fe、Co-Zr-Nb、Fe-Ta-C、45Ni-55Fe、Fe-Ni-N、Fe-Si、Fe-Si-Ni、67Co-10Ni-23Fe等。近年来发展起来的巨磁阻(GMR)材料,在一定的磁场下电阻急剧减小,一般减小幅度比通常磁性金属与合金的磁电阻数值约高10余倍。GMR一般由自由层/导电层/钉扎层/反强磁性层构成,其中自由层可为Ni-Fe、Ni-Fe/Co、Co-Fe等强磁体材料,在其两端安置有Co-Cr-Pt等永磁体薄膜,导电层为数nm的铜薄膜,钉扎层为数nm的软磁Co合金,磁化固定层用5~40nm的Ni-O、Ni-Mn、Mn-In、Fe-Cr-Pt、Cr-Mn-Pt、Fe-Mn等反强磁体,并加Ru/Co层的积层自由结构。采用GMR效应的读出磁头,将磁碟记录密度一下子提高了近二十倍,因此巨磁阻效应的研究对发展磁储存有着非常重要的意义。

声视领域内镭射唱片和镭射唱机的兴起,得益于光储存技术的巨大发展,光碟存贮是通过调制镭射束以光点的形式把资讯编码记录在光学圆盘镀膜介质中。与磁储存技术相比,光碟储存技术具有储存容量大、储存寿命长;非接触式读/写和擦,光头不会磨损或划伤盘面,因此光碟系统可靠,可以自由更换;经多次读写载噪比(CNR)不降低。光碟储存技术经过CD(Compact Disk)、DVD(Digital Versatile Disk)发展到将来的高密度DVD(HD-DVD)、超高密度DVD(SHD-DVD)过程中,储存介质材料是关键,一次写入的光碟材料以烧蚀型(Tc合金薄膜,Se-Tc非晶薄膜等)和相变型(Te-Ge-Sb非晶薄膜、AgInTeSb系薄膜、掺杂的ZnO薄膜、推拉型偶氮染料、亚酞菁染料)为主,可擦重写光碟材料以磁光型(GdCo、TeFe非晶薄膜、BiMnSiAl薄膜、稀土掺杂的石榴石系YIG、Co-Pt多层薄膜)为主。光碟储存的密度取决于镭射管的波长,DVD盘使用的InGaAlP红色镭射管(波长650nm)时,直径12cm的盘每面储存为4.7千兆位元组(GB),而使用ZnSe(波长515nm)可达12GB,将来采用GaN镭射管(波长410nm),储存密度可达18GB。要读写光盘里的资讯,必须采用高功率半导体镭射器,所用的镭射二极体采用化合物半导体GaAs、GaN等材料。

镭射器除了在光碟储存应用之外,在光通讯中的作用也是众所周知的。由于有了低阈值、低功耗、长寿命及快响应的半导体镭射器,使光纤通讯成为现实。光通讯就是由电讯号通过半导体镭射器变为光讯号,而后通过光导纤维作长距离传输,最后再由光讯号变为电讯号为人接收。光纤所传输的光讯号是由镭射器发出的,常用的为半导体镭射器,所用材料为GaAs、GaAlAs、GaInAsP、InGaAlP、GaSb等。在接受端所用的光探测器也为半导体材料。缺少光导纤维,光通讯也只能是“纸上谈兵”。低损耗的光学纤维是光纤通讯的关键材料,目前所用的光学纤维感测材料主要有低损耗石英玻璃、氟化物玻璃和Ga2S3为基础的硫化物玻璃和塑料光纤等,1公斤石英为主的光纤可代替成吨的铜铝电缆。光纤通讯的出现是资讯传输的一场革命,资讯容量大、重量轻、占用空间小、抗电磁干扰、串话少、保密性强,是光纤通讯的优点。光纤通讯的高速发展为现代资讯高速公路的建设和开通起到了至关重要的作用。

除了有线传播外,资讯的传播还采用无线的方式。在无线传播中最引人注目的发展是行动电话。行动电话的使用者愈多,所使用的频率愈高,现在正向千兆周的频率过渡,电话机的微波发射与接收亦是靠半导体电晶体来实现,其中部分Si电晶体正在被GaAs电晶体所取代。在手机中广泛采用的高频声表面波SAW(Surface Acoustic Wave)及体声波BAW(Bulk Surface Acoustic Wave)器件中的压电材料为a-SiO2、LiNbO3、LiTaO3、Li2B4O7、KNbO3、La3Ga5SiO14等压电晶体及ZnO/Al2O3和SiO2/ZnO/DLC/Si等高声速薄膜材料,采用的微波介质陶瓷材料则集中在BaO-TiO2体系、BaO-Ln2O3-TiO2(Ln=La,Pr,Nd,Sm,Eu,Gd)体系、复合钙钛矿A(B1/3B¢2/3)O3体系(A=Ba,Sr;B=Mg,Zn,Co,Ni,Mn;B¢=Nb,Ta)和铅基复合钙钛矿体系等材料上。

随着智慧化仪器仪表对高精度热敏器件需求的日益扩大,以及手持电话、掌上电脑PDA、膝上型电脑和其它行动式资讯及通讯装置的迅速普及,进一步带动了温度感测器和热敏电阻的大量需求,负温度系数(NTC)热敏电阻是由Co、Mn、Ni、Cu、Fe、Al等金属氧化物混合烧结而成,其阻值随温度的升高呈指数型下降,阻值-温度系数一般在百分之几,这一卓越的灵敏度使其能够探测极小的温度变化。正温度系数(PTC)热敏电阻一般都是由BaTiO3材料新增少量的稀土元素经高温烧结的敏感陶瓷制成的,这种材料在温度上升到居里温度点时,其阻值会以指数形式陡然增加,通常阻值-温度变化率在20~40%之间。前者大量使用在镍镉、镍氢及锂电池的快速充电、液晶显示器(LCD)影象对比度调节、蜂窝式电话和移动通讯系统中大量采用使用的温度补偿型晶体振荡器等中,来进行温度补偿,以保证器件效能稳定;此外还在计算机中的微电机、照相机镜头聚焦电机、印表机的列印头、软盘的伺服控制器和袖珍播放机的驱动器等中,发现它的身影。后者可以用于过流保护、发热器、彩电和监视器的消磁、袖珍压缩机电机的启动延迟、防止膝上型电脑常效应管(FET)的热击穿等。

为了保证资讯执行的通畅,还有许多材料在默默地作著贡献,例如,用于制作绿色电池的材料有:镍氢电池的正、负极材料用MH合金和Ni(OH)2材料、锂离子电池的正、负极用LiCoO2、LiMn2O4和MCMB碳材料等电极材料;行动电话、PC机以及诸如数码相机、MD播放机/录音机、DVD装置和游戏机等数字音/视讯装置等中钽电容器所用材料;现代永磁材料Fe14Nd2B在制造永磁电极、磁性轴承、耳机及微波装置等方面有十分重要的用途;印刷电路板(PCB)及超薄高、低介电损耗的新型覆铜板(CCL)用材料;环氧模塑料、氧化铝和氮化铝陶瓷是半导体和积体电路晶片的封装材料;积体电路用关键结构与工艺辅助材料(高纯试剂、特种气体、塑封料、引线框架材料等),不一而足,这些在浩瀚的材料世界里星光灿烂的新材料,正在数字生活里发挥着不可或缺的作用。

随着科技的发展,大规模积体电路将迎来深亚微米(0.1mm)矽微电子技术时代,小于0.1mm的线条就属于奈米范畴,它的线宽就已与电子的德布罗意数相近,电子在器件内部的输运散射也将呈现量子化特性,因而器件的设计将面临一系列来自器件工作原理和工艺技术的棘手问题,导致常说的矽微电子技术的“极限”。由于光子的速度比电子速度快得多,光的频率比无线电的频率高得多,为提高传输速度和载波密度,资讯的载体由电子到光子是必然趋势。目前已经发展了许多种镭射晶体和光电子材料,如Nd:YAG、Nd:YLF、Ho:YAG、Er:YAG、Ho:Cr:Tm:YAG、Er:YAG、Ho:Cr:Tm:YLF、Ti:Al2O3、YVO4、Nd:YVO4、Ti:Al2O3、KDP、KTP、BBO、BGO、LBO、LiNbO3、K(Ta,Nb)O3、Fe:KnBO3、BaTiO3、LAP等,所有这些材料将为以光通讯、光储存、光电显示为主的光电子技术产业作出贡献。随着资讯材料由电子材料、微电子材料、光电子材料向光子材料发展,将会出现单电子储存器、奈米晶片、量子计算机、全光数字计算机、超导电脑、化学电脑、生物电脑和神经电脑等奈米电脑,将会极大地影响着人类的数字生活。

本世纪以来,以数字化通讯(Digital Communication)、数字化交换(Digital Switching)、数字化处理(Digital Processing)技术为主的数字化生活(Digital Life)正在向我们招手,一步步地向我们走来——清晨,MP3音箱播放出悦耳的晨曲,催我们按时起床;上班途中,开启随身携带的膝上型电脑,进行新一天的工作安排;上班以后,通过网际网路召开网路会议、开展远端教学和实时办公;在下班之前,我们远端启动家里的空调和溼度调节器,保证家中室温适宜;下班途中,开启手机,悠然自在观看精彩的影视节目;进家门前,我们接收网上订购的货物;回到家中,和有线电视台进行互动,观看和下载喜欢的影视节目和歌曲,制作多媒体,也可进入社群网际网路,上网浏览新闻了解天气……这一切看上去是不是很奇妙?似乎遥不可及。其实它正在和将要发生在我们身边,随着新一代家用电脑和网际网路的出现,如此美好数字生活将成为现实。当享受数字生活的同时,饮水思源,请不要忘记为此作出巨大贡献的功臣——绚丽多彩的新材料世界!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8668339.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-19
下一篇 2023-04-19

发表评论

登录后才能评论

评论列表(0条)

保存