IGBT的主要优点有:
1、IGBT在正常工作时,导通电阻较低,增大了器件的电流容量。
2、IGBT的输出电流和跨导都大于相同尺寸的功率MOSFET。
3、较宽的低掺杂漂移区(n-区)能够承受很高的电压,因而可以实现高耐压的器件。
4、IGBT利用栅极可以关断很大的漏极电流。
6、与MOSFET一样,IGBT具有很大的输入电阻和较小的输入电容,则驱动功率低,开关速度高。
IGBT也具有若干重大的的缺点:
1、因为IGBT工作时,其漏极区(p+区)将要向漂移区(n-区)注入少数载流子——空穴,则在漂移区中存储有少数载流子电荷;当IGBT关断(栅极电压降为0)时,这些存储的电荷不能立即去掉,从而IGBT的漏极电流也就相应地不能马上关断,即漏极电流波形有一个较长时间的拖尾——关断时间较长(10~50ms)。
2、所以IGBT的工作频率较低。为了缩短关断时间,可以采用电子辐照等方法来降低少数载流子寿命,但是这将会引起正向压降的增大等弊病。
3、IGBT中存在有寄生晶闸管——MOS栅控的n+-p-n--p+晶闸管结构,这就使得器件的最大工作电流要受到此寄生晶闸管闭锁效应的限制(采用阴极短路技术可以适当地减弱这种不良影响)。
mosfet和igbt的区别如下:
1、结构以及应用区别
从结构上来讲,以N型沟道为例,IGBT与MOSFET的区别在于MOSFET的衬底为N型,IGBT的衬底为P型;从原理上说IGBT相当于一格MOSFET与BIpolar的组合,通过背面P型层空穴降低器件的导通电阻,但同时也会引入一些拖尾电流问题。
从产品上来说,IGBT一般用在高压功率产品上,从600V到几千伏都有,MOSFET应用电路则从十几伏到一千左右。
2、工作原理的区别
对于MOSFET来说,仅由多子承担的电荷运输没有任何存储效应,所以很容易实现极端的开关时间。PowerMosfet的开关的高频特性十分优秀,所以可以用在高频场和,在低电压工作状态下,开关管动作损耗远低于其他组件,但是缺点是在高压状态下,压降高,并且随着电压等级的增大,导通电阻也变大。
因而其传导损耗比较大,尤其是在高电压应用场合。IGBT是其耐压比较高,压降低,功率可以达到5000w,IGBT开关频率在40-50k之前,开关损耗也比较高,并且会出现擎柱效应。
3、驱动电路区别
IGBT输入电容要比MOS大,因此需要更大电压驱动功率,mosfet一般在高频且低压的场合应用,即功率<1000W及开关频率>100kHZ,而IGBT在低频率高功率的场合表现较好。
简介
MOS管即MOSFET,中文全称是金属-氧化物半导体场效应晶体管,由于这种场效应管的栅极被绝缘层隔离,所以又叫绝缘栅场效应管。MOSFET又可分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
IGBT (Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由晶体三极管和MOS管组成的复合型半导体器件。
IGBT作为新型电子半导体器件,具有输入阻抗高,电压控制功耗低,控制电路简单,耐高压,承受电流大等特性,在各种电子电路中获得极广泛的应用。
IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
相关内容:
IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。其中一个MOSFET驱动两个双极器件。基片的应用在管体的P+和 N+ 区之间创建了一个J1结。
当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率 MOSFET的方式产生一股电流。最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流); 一个空穴电流(双极)。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)